Comment: This TM produces 143 nonzeros in 26,375,397,569,930 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | B1R | A3L | A1L | A4L | A1R | 1 | right | B | 3 | left | A | 1 | left | A | 4 | left | A | 1 | right | A |
| B | B2L | A2R | Z1R | A0R | B0R | 2 | left | B | 2 | right | A | 1 | right | Z | 0 | right | A | 0 | right | B |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 4-bck-bck-2-bck-2-bck-4-macro machine.
The same TM as 4-bck-bck-2-bck-2-bck-4-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <B 2
3 1 2 A> 2
4 0 2 <A 1
5 -1 <A 1 1
6 0 1 B> 1 1
7 1 1 2 A> 1
8 0 1 2 <A 3
9 -1 1 <A 1 3
10 -2 <A 3 1 3
11 -1 1 B> 3 1 3
12 0 1 0 A> 1 3
13 -1 1 0 <A 3 3
14 0 1 1 B> 3 3
15 1 1 1 0 A> 3
16 0 1 1 0 <A 4
17 1 13 B> 4
18 2 13 0 B>
19 1 13 0 <B 2
20 0 13 <B 2 2
21 1 1 1 2 A> 2 2
22 0 1 1 2 <A 1 2
23 -1 1 1 <A 1 1 2
+ 25 -3 <A 3 3 1 1 2
26 -2 1 B> 3 3 1 1 2
27 -1 1 0 A> 3 1 1 2
28 -2 1 0 <A 4 1 1 2
29 -1 1 1 B> 4 1 1 2
30 0 1 1 0 B> 1 1 2
31 1 1 1 0 2 A> 1 2
32 0 1 1 0 2 <A 3 2
33 -1 1 1 0 <A 1 3 2
34 0 13 B> 1 3 2
35 1 13 2 A> 3 2
36 0 13 2 <A 4 2
37 -1 13 <A 1 4 2
+ 40 -4 <A 33 1 4 2
41 -3 1 B> 33 1 4 2
42 -2 1 0 A> 3 3 1 4 2
43 -3 1 0 <A 4 3 1 4 2
44 -2 1 1 B> 4 3 1 4 2
45 -1 1 1 0 B> 3 1 4 2
46 0 1 1 0 0 A> 1 4 2
47 -1 1 1 0 0 <A 3 4 2
48 0 1 1 0 1 B> 3 4 2
49 1 1 1 0 1 0 A> 4 2
50 2 1 1 0 1 0 1 A> 2
51 1 1 1 0 1 0 1 <A 1
52 0 1 1 0 1 0 <A 3 1
53 1 1 1 0 1 1 B> 3 1
54 2 1 1 0 1 1 0 A> 1
55 1 1 1 0 1 1 0 <A 3
56 2 1 1 0 13 B> 3
57 3 1 1 0 13 0 A>
58 4 1 1 0 13 0 1 B>
59 3 1 1 0 13 0 1 <B 2
60 4 1 1 0 13 0 2 A> 2
61 3 1 1 0 13 0 2 <A 1
62 2 1 1 0 13 0 <A 1 1
63 3 1 1 0 14 B> 1 1
64 4 1 1 0 14 2 A> 1
65 3 1 1 0 14 2 <A 3
66 2 1 1 0 14 <A 1 3
+ 70 -2 1 1 0 <A 34 1 3
71 -1 13 B> 34 1 3
72 0 13 0 A> 33 1 3
73 -1 13 0 <A 4 3 3 1 3
74 0 14 B> 4 3 3 1 3
75 1 14 0 B> 3 3 1 3
76 2 14 0 0 A> 3 1 3
77 1 14 0 0 <A 4 1 3
78 2 14 0 1 B> 4 1 3
79 3 14 0 1 0 B> 1 3
80 4 14 0 1 0 2 A> 3
81 3 14 0 1 0 2 <A 4
82 2 14 0 1 0 <A 1 4
83 3 14 0 1 1 B> 1 4
84 4 14 0 1 1 2 A> 4
85 5 14 0 1 1 2 1 A>
86 6 14 0 1 1 2 1 1 B>
87 5 14 0 1 1 2 1 1 <B 2
88 6 14 0 1 1 2 1 2 A> 2
89 5 14 0 1 1 2 1 2 <A 1
90 4 14 0 1 1 2 1 <A 1 1
91 3 14 0 1 1 2 <A 3 1 1
92 2 14 0 1 1 <A 1 3 1 1
+ 94 0 14 0 <A 3 3 1 3 1 1
95 1 15 B> 3 3 1 3 1 1
96 2 15 0 A> 3 1 3 1 1
97 1 15 0 <A 4 1 3 1 1
98 2 16 B> 4 1 3 1 1
99 3 16 0 B> 1 3 1 1
100 4 16 0 2 A> 3 1 1
101 3 16 0 2 <A 4 1 1
102 2 16 0 <A 1 4 1 1
103 3 17 B> 1 4 1 1
104 4 17 2 A> 4 1 1
105 5 17 2 1 A> 1 1
106 4 17 2 1 <A 3 1
107 3 17 2 <A 3 3 1
108 2 17 <A 1 3 3 1
+ 115 -5 <A 37 1 3 3 1
116 -4 1 B> 37 1 3 3 1
117 -3 1 0 A> 36 1 3 3 1
118 -4 1 0 <A 4 35 1 3 3 1
119 -3 1 1 B> 4 35 1 3 3 1
120 -2 1 1 0 B> 35 1 3 3 1
121 -1 1 1 0 0 A> 34 1 3 3 1
122 -2 1 1 0 0 <A 4 33 1 3 3 1
123 -1 1 1 0 1 B> 4 33 1 3 3 1
124 0 1 1 0 1 0 B> 33 1 3 3 1
125 1 1 1 0 1 0 0 A> 3 3 1 3 3 1
126 0 1 1 0 1 0 0 <A 4 3 1 3 3 1
127 1 1 1 0 1 0 1 B> 4 3 1 3 3 1
128 2 1 1 0 1 0 1 0 B> 3 1 3 3 1
129 3 1 1 0 1 0 1 0 0 A> 1 3 3 1
130 2 1 1 0 1 0 1 0 0 <A 33 1
131 3 1 1 0 1 0 1 0 1 B> 33 1
132 4 1 1 0 1 0 1 0 1 0 A> 3 3 1
133 3 1 1 0 1 0 1 0 1 0 <A 4 3 1
134 4 1 1 0 1 0 1 0 1 1 B> 4 3 1
135 5 1 1 0 1 0 1 0 1 1 0 B> 3 1
136 6 1 1 0 1 0 1 0 1 1 0 0 A> 1
137 5 1 1 0 1 0 1 0 1 1 0 0 <A 3
138 6 1 1 0 1 0 1 0 1 1 0 1 B> 3
139 7 1 1 0 1 0 1 0 1 1 0 1 0 A>
140 8 1 1 0 1 0 1 0 1 1 0 1 0 1 B>
141 7 1 1 0 1 0 1 0 1 1 0 1 0 1 <B 2
142 8 1 1 0 1 0 1 0 1 1 0 1 0 2 A> 2
143 7 1 1 0 1 0 1 0 1 1 0 1 0 2 <A 1
144 6 1 1 0 1 0 1 0 1 1 0 1 0 <A 1 1
145 7 1 1 0 1 0 1 0 1 1 0 1 1 B> 1 1
146 8 1 1 0 1 0 1 0 1 1 0 1 1 2 A> 1
147 7 1 1 0 1 0 1 0 1 1 0 1 1 2 <A 3
148 6 1 1 0 1 0 1 0 1 1 0 1 1 <A 1 3
+ 150 4 1 1 0 1 0 1 0 1 1 0 <A 3 3 1 3
151 5 1 1 0 1 0 1 0 13 B> 3 3 1 3
152 6 1 1 0 1 0 1 0 13 0 A> 3 1 3
153 5 1 1 0 1 0 1 0 13 0 <A 4 1 3
154 6 1 1 0 1 0 1 0 14 B> 4 1 3
155 7 1 1 0 1 0 1 0 14 0 B> 1 3
156 8 1 1 0 1 0 1 0 14 0 2 A> 3
157 7 1 1 0 1 0 1 0 14 0 2 <A 4
158 6 1 1 0 1 0 1 0 14 0 <A 1 4
159 7 1 1 0 1 0 1 0 15 B> 1 4
160 8 1 1 0 1 0 1 0 15 2 A> 4
161 9 1 1 0 1 0 1 0 15 2 1 A>
162 10 1 1 0 1 0 1 0 15 2 1 1 B>
163 9 1 1 0 1 0 1 0 15 2 1 1 <B 2
164 10 1 1 0 1 0 1 0 15 2 1 2 A> 2
165 9 1 1 0 1 0 1 0 15 2 1 2 <A 1
166 8 1 1 0 1 0 1 0 15 2 1 <A 1 1
167 7 1 1 0 1 0 1 0 15 2 <A 3 1 1
168 6 1 1 0 1 0 1 0 15 <A 1 3 1 1
+ 173 1 1 1 0 1 0 1 0 <A 35 1 3 1 1
174 2 1 1 0 1 0 1 1 B> 35 1 3 1 1
175 3 1 1 0 1 0 1 1 0 A> 34 1 3 1 1
176 2 1 1 0 1 0 1 1 0 <A 4 33 1 3 1 1
177 3 1 1 0 1 0 13 B> 4 33 1 3 1 1
178 4 1 1 0 1 0 13 0 B> 33 1 3 1 1
179 5 1 1 0 1 0 13 0 0 A> 3 3 1 3 1 1
180 4 1 1 0 1 0 13 0 0 <A 4 3 1 3 1 1
181 5 1 1 0 1 0 13 0 1 B> 4 3 1 3 1 1
182 6 1 1 0 1 0 13 0 1 0 B> 3 1 3 1 1
183 7 1 1 0 1 0 13 0 1 0 0 A> 1 3 1 1
184 6 1 1 0 1 0 13 0 1 0 0 <A 3 3 1 1
185 7 1 1 0 1 0 13 0 1 0 1 B> 3 3 1 1
186 8 1 1 0 1 0 13 0 1 0 1 0 A> 3 1 1
187 7 1 1 0 1 0 13 0 1 0 1 0 <A 4 1 1
188 8 1 1 0 1 0 13 0 1 0 1 1 B> 4 1 1
189 9 1 1 0 1 0 13 0 1 0 1 1 0 B> 1 1
190 10 1 1 0 1 0 13 0 1 0 1 1 0 2 A> 1
191 9 1 1 0 1 0 13 0 1 0 1 1 0 2 <A 3
192 8 1 1 0 1 0 13 0 1 0 1 1 0 <A 1 3
193 9 1 1 0 1 0 13 0 1 0 13 B> 1 3
194 10 1 1 0 1 0 13 0 1 0 13 2 A> 3
195 9 1 1 0 1 0 13 0 1 0 13 2 <A 4
196 8 1 1 0 1 0 13 0 1 0 13 <A 1 4
+ 199 5 1 1 0 1 0 13 0 1 0 <A 33 1 4
200 6 1 1 0 1 0 13 0 1 1 B> 33 1 4
201 7 1 1 0 1 0 13 0 1 1 0 A> 3 3 1 4
202 6 1 1 0 1 0 13 0 1 1 0 <A 4 3 1 4
203 7 1 1 0 1 0 13 0 13 B> 4 3 1 4
204 8 1 1 0 1 0 13 0 13 0 B> 3 1 4
205 9 1 1 0 1 0 13 0 13 0 0 A> 1 4
206 8 1 1 0 1 0 13 0 13 0 0 <A 3 4
207 9 1 1 0 1 0 13 0 13 0 1 B> 3 4
208 10 1 1 0 1 0 13 0 13 0 1 0 A> 4
209 11 1 1 0 1 0 13 0 13 0 1 0 1 A>
210 12 1 1 0 1 0 13 0 13 0 1 0 1 1 B>
211 11 1 1 0 1 0 13 0 13 0 1 0 1 1 <B 2
212 12 1 1 0 1 0 13 0 13 0 1 0 1 2 A> 2
213 11 1 1 0 1 0 13 0 13 0 1 0 1 2 <A 1
214 10 1 1 0 1 0 13 0 13 0 1 0 1 <A 1 1
215 9 1 1 0 1 0 13 0 13 0 1 0 <A 3 1 1
216 10 1 1 0 1 0 13 0 13 0 1 1 B> 3 1 1
217 11 1 1 0 1 0 13 0 13 0 1 1 0 A> 1 1
218 10 1 1 0 1 0 13 0 13 0 1 1 0 <A 3 1
219 11 1 1 0 1 0 13 0 13 0 13 B> 3 1
220 12 1 1 0 1 0 13 0 13 0 13 0 A> 1
After 220 steps (201 lines): state = A.
Produced 13 nonzeros.
Tape index 12, scanned [-5 .. 12].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 149 | 48 | 48 | 28 | 20 | 5 | 0 | 7 | 3 | 15 | 49 |
| B | 71 | 8 | 20 | 28 | 15 | 1 | 2 | 11 | 17 | ||