Comment: This TM produces 143 nonzeros in 26,375,397,569,930 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | B1R | A3L | A1L | A4L | A1R | 1 | right | B | 3 | left | A | 1 | left | A | 4 | left | A | 1 | right | A |
B | B2L | A2R | Z1R | A0R | B0R | 2 | left | B | 2 | right | A | 1 | right | Z | 0 | right | A | 0 | right | B |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 4-bck-bck-2-bck-2-bck-4-macro machine. The same TM as 4-bck-bck-2-bck-2-bck-4-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <B 2 3 1 2 A> 2 4 0 2 <A 1 5 -1 <A 1 1 6 0 1 B> 1 1 7 1 1 2 A> 1 8 0 1 2 <A 3 9 -1 1 <A 1 3 10 -2 <A 3 1 3 11 -1 1 B> 3 1 3 12 0 1 0 A> 1 3 13 -1 1 0 <A 3 3 14 0 1 1 B> 3 3 15 1 1 1 0 A> 3 16 0 1 1 0 <A 4 17 1 13 B> 4 18 2 13 0 B> 19 1 13 0 <B 2 20 0 13 <B 2 2 21 1 1 1 2 A> 2 2 22 0 1 1 2 <A 1 2 23 -1 1 1 <A 1 1 2 + 25 -3 <A 3 3 1 1 2 26 -2 1 B> 3 3 1 1 2 27 -1 1 0 A> 3 1 1 2 28 -2 1 0 <A 4 1 1 2 29 -1 1 1 B> 4 1 1 2 30 0 1 1 0 B> 1 1 2 31 1 1 1 0 2 A> 1 2 32 0 1 1 0 2 <A 3 2 33 -1 1 1 0 <A 1 3 2 34 0 13 B> 1 3 2 35 1 13 2 A> 3 2 36 0 13 2 <A 4 2 37 -1 13 <A 1 4 2 + 40 -4 <A 33 1 4 2 41 -3 1 B> 33 1 4 2 42 -2 1 0 A> 3 3 1 4 2 43 -3 1 0 <A 4 3 1 4 2 44 -2 1 1 B> 4 3 1 4 2 45 -1 1 1 0 B> 3 1 4 2 46 0 1 1 0 0 A> 1 4 2 47 -1 1 1 0 0 <A 3 4 2 48 0 1 1 0 1 B> 3 4 2 49 1 1 1 0 1 0 A> 4 2 50 2 1 1 0 1 0 1 A> 2 51 1 1 1 0 1 0 1 <A 1 52 0 1 1 0 1 0 <A 3 1 53 1 1 1 0 1 1 B> 3 1 54 2 1 1 0 1 1 0 A> 1 55 1 1 1 0 1 1 0 <A 3 56 2 1 1 0 13 B> 3 57 3 1 1 0 13 0 A> 58 4 1 1 0 13 0 1 B> 59 3 1 1 0 13 0 1 <B 2 60 4 1 1 0 13 0 2 A> 2 61 3 1 1 0 13 0 2 <A 1 62 2 1 1 0 13 0 <A 1 1 63 3 1 1 0 14 B> 1 1 64 4 1 1 0 14 2 A> 1 65 3 1 1 0 14 2 <A 3 66 2 1 1 0 14 <A 1 3 + 70 -2 1 1 0 <A 34 1 3 71 -1 13 B> 34 1 3 72 0 13 0 A> 33 1 3 73 -1 13 0 <A 4 3 3 1 3 74 0 14 B> 4 3 3 1 3 75 1 14 0 B> 3 3 1 3 76 2 14 0 0 A> 3 1 3 77 1 14 0 0 <A 4 1 3 78 2 14 0 1 B> 4 1 3 79 3 14 0 1 0 B> 1 3 80 4 14 0 1 0 2 A> 3 81 3 14 0 1 0 2 <A 4 82 2 14 0 1 0 <A 1 4 83 3 14 0 1 1 B> 1 4 84 4 14 0 1 1 2 A> 4 85 5 14 0 1 1 2 1 A> 86 6 14 0 1 1 2 1 1 B> 87 5 14 0 1 1 2 1 1 <B 2 88 6 14 0 1 1 2 1 2 A> 2 89 5 14 0 1 1 2 1 2 <A 1 90 4 14 0 1 1 2 1 <A 1 1 91 3 14 0 1 1 2 <A 3 1 1 92 2 14 0 1 1 <A 1 3 1 1 + 94 0 14 0 <A 3 3 1 3 1 1 95 1 15 B> 3 3 1 3 1 1 96 2 15 0 A> 3 1 3 1 1 97 1 15 0 <A 4 1 3 1 1 98 2 16 B> 4 1 3 1 1 99 3 16 0 B> 1 3 1 1 100 4 16 0 2 A> 3 1 1 101 3 16 0 2 <A 4 1 1 102 2 16 0 <A 1 4 1 1 103 3 17 B> 1 4 1 1 104 4 17 2 A> 4 1 1 105 5 17 2 1 A> 1 1 106 4 17 2 1 <A 3 1 107 3 17 2 <A 3 3 1 108 2 17 <A 1 3 3 1 + 115 -5 <A 37 1 3 3 1 116 -4 1 B> 37 1 3 3 1 117 -3 1 0 A> 36 1 3 3 1 118 -4 1 0 <A 4 35 1 3 3 1 119 -3 1 1 B> 4 35 1 3 3 1 120 -2 1 1 0 B> 35 1 3 3 1 121 -1 1 1 0 0 A> 34 1 3 3 1 122 -2 1 1 0 0 <A 4 33 1 3 3 1 123 -1 1 1 0 1 B> 4 33 1 3 3 1 124 0 1 1 0 1 0 B> 33 1 3 3 1 125 1 1 1 0 1 0 0 A> 3 3 1 3 3 1 126 0 1 1 0 1 0 0 <A 4 3 1 3 3 1 127 1 1 1 0 1 0 1 B> 4 3 1 3 3 1 128 2 1 1 0 1 0 1 0 B> 3 1 3 3 1 129 3 1 1 0 1 0 1 0 0 A> 1 3 3 1 130 2 1 1 0 1 0 1 0 0 <A 33 1 131 3 1 1 0 1 0 1 0 1 B> 33 1 132 4 1 1 0 1 0 1 0 1 0 A> 3 3 1 133 3 1 1 0 1 0 1 0 1 0 <A 4 3 1 134 4 1 1 0 1 0 1 0 1 1 B> 4 3 1 135 5 1 1 0 1 0 1 0 1 1 0 B> 3 1 136 6 1 1 0 1 0 1 0 1 1 0 0 A> 1 137 5 1 1 0 1 0 1 0 1 1 0 0 <A 3 138 6 1 1 0 1 0 1 0 1 1 0 1 B> 3 139 7 1 1 0 1 0 1 0 1 1 0 1 0 A> 140 8 1 1 0 1 0 1 0 1 1 0 1 0 1 B> 141 7 1 1 0 1 0 1 0 1 1 0 1 0 1 <B 2 142 8 1 1 0 1 0 1 0 1 1 0 1 0 2 A> 2 143 7 1 1 0 1 0 1 0 1 1 0 1 0 2 <A 1 144 6 1 1 0 1 0 1 0 1 1 0 1 0 <A 1 1 145 7 1 1 0 1 0 1 0 1 1 0 1 1 B> 1 1 146 8 1 1 0 1 0 1 0 1 1 0 1 1 2 A> 1 147 7 1 1 0 1 0 1 0 1 1 0 1 1 2 <A 3 148 6 1 1 0 1 0 1 0 1 1 0 1 1 <A 1 3 + 150 4 1 1 0 1 0 1 0 1 1 0 <A 3 3 1 3 151 5 1 1 0 1 0 1 0 13 B> 3 3 1 3 152 6 1 1 0 1 0 1 0 13 0 A> 3 1 3 153 5 1 1 0 1 0 1 0 13 0 <A 4 1 3 154 6 1 1 0 1 0 1 0 14 B> 4 1 3 155 7 1 1 0 1 0 1 0 14 0 B> 1 3 156 8 1 1 0 1 0 1 0 14 0 2 A> 3 157 7 1 1 0 1 0 1 0 14 0 2 <A 4 158 6 1 1 0 1 0 1 0 14 0 <A 1 4 159 7 1 1 0 1 0 1 0 15 B> 1 4 160 8 1 1 0 1 0 1 0 15 2 A> 4 161 9 1 1 0 1 0 1 0 15 2 1 A> 162 10 1 1 0 1 0 1 0 15 2 1 1 B> 163 9 1 1 0 1 0 1 0 15 2 1 1 <B 2 164 10 1 1 0 1 0 1 0 15 2 1 2 A> 2 165 9 1 1 0 1 0 1 0 15 2 1 2 <A 1 166 8 1 1 0 1 0 1 0 15 2 1 <A 1 1 167 7 1 1 0 1 0 1 0 15 2 <A 3 1 1 168 6 1 1 0 1 0 1 0 15 <A 1 3 1 1 + 173 1 1 1 0 1 0 1 0 <A 35 1 3 1 1 174 2 1 1 0 1 0 1 1 B> 35 1 3 1 1 175 3 1 1 0 1 0 1 1 0 A> 34 1 3 1 1 176 2 1 1 0 1 0 1 1 0 <A 4 33 1 3 1 1 177 3 1 1 0 1 0 13 B> 4 33 1 3 1 1 178 4 1 1 0 1 0 13 0 B> 33 1 3 1 1 179 5 1 1 0 1 0 13 0 0 A> 3 3 1 3 1 1 180 4 1 1 0 1 0 13 0 0 <A 4 3 1 3 1 1 181 5 1 1 0 1 0 13 0 1 B> 4 3 1 3 1 1 182 6 1 1 0 1 0 13 0 1 0 B> 3 1 3 1 1 183 7 1 1 0 1 0 13 0 1 0 0 A> 1 3 1 1 184 6 1 1 0 1 0 13 0 1 0 0 <A 3 3 1 1 185 7 1 1 0 1 0 13 0 1 0 1 B> 3 3 1 1 186 8 1 1 0 1 0 13 0 1 0 1 0 A> 3 1 1 187 7 1 1 0 1 0 13 0 1 0 1 0 <A 4 1 1 188 8 1 1 0 1 0 13 0 1 0 1 1 B> 4 1 1 189 9 1 1 0 1 0 13 0 1 0 1 1 0 B> 1 1 190 10 1 1 0 1 0 13 0 1 0 1 1 0 2 A> 1 191 9 1 1 0 1 0 13 0 1 0 1 1 0 2 <A 3 192 8 1 1 0 1 0 13 0 1 0 1 1 0 <A 1 3 193 9 1 1 0 1 0 13 0 1 0 13 B> 1 3 194 10 1 1 0 1 0 13 0 1 0 13 2 A> 3 195 9 1 1 0 1 0 13 0 1 0 13 2 <A 4 196 8 1 1 0 1 0 13 0 1 0 13 <A 1 4 + 199 5 1 1 0 1 0 13 0 1 0 <A 33 1 4 200 6 1 1 0 1 0 13 0 1 1 B> 33 1 4 201 7 1 1 0 1 0 13 0 1 1 0 A> 3 3 1 4 202 6 1 1 0 1 0 13 0 1 1 0 <A 4 3 1 4 203 7 1 1 0 1 0 13 0 13 B> 4 3 1 4 204 8 1 1 0 1 0 13 0 13 0 B> 3 1 4 205 9 1 1 0 1 0 13 0 13 0 0 A> 1 4 206 8 1 1 0 1 0 13 0 13 0 0 <A 3 4 207 9 1 1 0 1 0 13 0 13 0 1 B> 3 4 208 10 1 1 0 1 0 13 0 13 0 1 0 A> 4 209 11 1 1 0 1 0 13 0 13 0 1 0 1 A> 210 12 1 1 0 1 0 13 0 13 0 1 0 1 1 B> 211 11 1 1 0 1 0 13 0 13 0 1 0 1 1 <B 2 212 12 1 1 0 1 0 13 0 13 0 1 0 1 2 A> 2 213 11 1 1 0 1 0 13 0 13 0 1 0 1 2 <A 1 214 10 1 1 0 1 0 13 0 13 0 1 0 1 <A 1 1 215 9 1 1 0 1 0 13 0 13 0 1 0 <A 3 1 1 216 10 1 1 0 1 0 13 0 13 0 1 1 B> 3 1 1 217 11 1 1 0 1 0 13 0 13 0 1 1 0 A> 1 1 218 10 1 1 0 1 0 13 0 13 0 1 1 0 <A 3 1 219 11 1 1 0 1 0 13 0 13 0 13 B> 3 1 220 12 1 1 0 1 0 13 0 13 0 13 0 A> 1 After 220 steps (201 lines): state = A. Produced 13 nonzeros. Tape index 12, scanned [-5 .. 12].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 149 | 48 | 48 | 28 | 20 | 5 | 0 | 7 | 3 | 15 | 49 |
B | 71 | 8 | 20 | 28 | 15 | 1 | 2 | 11 | 17 |