2-state 5-symbol TM #j (G. Lafitte & C. Papazian)

Comment: This TM produces 143 nonzeros in 26,375,397,569,930 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A B1R A3L A1L A4L A1R 1 right B 3 left A 1 left A 4 left A 1 right A
B B2L A2R Z1R A0R B0R 2 left B 2 right A 1 right Z 0 right A 0 right B
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 4-bck-bck-2-bck-2-bck-4-macro machine.
The same TM as 4-bck-bck-2-bck-2-bck-4-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     0  1 <B 2
     3     1  2 A> 2
     4     0  2 <A 1
     5    -1  <A 1 1
     6     0  1 B> 1 1
     7     1  1 2 A> 1
     8     0  1 2 <A 3
     9    -1  1 <A 1 3
    10    -2  <A 3 1 3
    11    -1  1 B> 3 1 3
    12     0  1 0 A> 1 3
    13    -1  1 0 <A 3 3
    14     0  1 1 B> 3 3
    15     1  1 1 0 A> 3
    16     0  1 1 0 <A 4
    17     1  13 B> 4
    18     2  13 0 B>
    19     1  13 0 <B 2
    20     0  13 <B 2 2
    21     1  1 1 2 A> 2 2
    22     0  1 1 2 <A 1 2
    23    -1  1 1 <A 1 1 2
+   25    -3  <A 3 3 1 1 2
    26    -2  1 B> 3 3 1 1 2
    27    -1  1 0 A> 3 1 1 2
    28    -2  1 0 <A 4 1 1 2
    29    -1  1 1 B> 4 1 1 2
    30     0  1 1 0 B> 1 1 2
    31     1  1 1 0 2 A> 1 2
    32     0  1 1 0 2 <A 3 2
    33    -1  1 1 0 <A 1 3 2
    34     0  13 B> 1 3 2
    35     1  13 2 A> 3 2
    36     0  13 2 <A 4 2
    37    -1  13 <A 1 4 2
+   40    -4  <A 33 1 4 2
    41    -3  1 B> 33 1 4 2
    42    -2  1 0 A> 3 3 1 4 2
    43    -3  1 0 <A 4 3 1 4 2
    44    -2  1 1 B> 4 3 1 4 2
    45    -1  1 1 0 B> 3 1 4 2
    46     0  1 1 0 0 A> 1 4 2
    47    -1  1 1 0 0 <A 3 4 2
    48     0  1 1 0 1 B> 3 4 2
    49     1  1 1 0 1 0 A> 4 2
    50     2  1 1 0 1 0 1 A> 2
    51     1  1 1 0 1 0 1 <A 1
    52     0  1 1 0 1 0 <A 3 1
    53     1  1 1 0 1 1 B> 3 1
    54     2  1 1 0 1 1 0 A> 1
    55     1  1 1 0 1 1 0 <A 3
    56     2  1 1 0 13 B> 3
    57     3  1 1 0 13 0 A>
    58     4  1 1 0 13 0 1 B>
    59     3  1 1 0 13 0 1 <B 2
    60     4  1 1 0 13 0 2 A> 2
    61     3  1 1 0 13 0 2 <A 1
    62     2  1 1 0 13 0 <A 1 1
    63     3  1 1 0 14 B> 1 1
    64     4  1 1 0 14 2 A> 1
    65     3  1 1 0 14 2 <A 3
    66     2  1 1 0 14 <A 1 3
+   70    -2  1 1 0 <A 34 1 3
    71    -1  13 B> 34 1 3
    72     0  13 0 A> 33 1 3
    73    -1  13 0 <A 4 3 3 1 3
    74     0  14 B> 4 3 3 1 3
    75     1  14 0 B> 3 3 1 3
    76     2  14 0 0 A> 3 1 3
    77     1  14 0 0 <A 4 1 3
    78     2  14 0 1 B> 4 1 3
    79     3  14 0 1 0 B> 1 3
    80     4  14 0 1 0 2 A> 3
    81     3  14 0 1 0 2 <A 4
    82     2  14 0 1 0 <A 1 4
    83     3  14 0 1 1 B> 1 4
    84     4  14 0 1 1 2 A> 4
    85     5  14 0 1 1 2 1 A>
    86     6  14 0 1 1 2 1 1 B>
    87     5  14 0 1 1 2 1 1 <B 2
    88     6  14 0 1 1 2 1 2 A> 2
    89     5  14 0 1 1 2 1 2 <A 1
    90     4  14 0 1 1 2 1 <A 1 1
    91     3  14 0 1 1 2 <A 3 1 1
    92     2  14 0 1 1 <A 1 3 1 1
+   94     0  14 0 <A 3 3 1 3 1 1
    95     1  15 B> 3 3 1 3 1 1
    96     2  15 0 A> 3 1 3 1 1
    97     1  15 0 <A 4 1 3 1 1
    98     2  16 B> 4 1 3 1 1
    99     3  16 0 B> 1 3 1 1
   100     4  16 0 2 A> 3 1 1
   101     3  16 0 2 <A 4 1 1
   102     2  16 0 <A 1 4 1 1
   103     3  17 B> 1 4 1 1
   104     4  17 2 A> 4 1 1
   105     5  17 2 1 A> 1 1
   106     4  17 2 1 <A 3 1
   107     3  17 2 <A 3 3 1
   108     2  17 <A 1 3 3 1
+  115    -5  <A 37 1 3 3 1
   116    -4  1 B> 37 1 3 3 1
   117    -3  1 0 A> 36 1 3 3 1
   118    -4  1 0 <A 4 35 1 3 3 1
   119    -3  1 1 B> 4 35 1 3 3 1
   120    -2  1 1 0 B> 35 1 3 3 1
   121    -1  1 1 0 0 A> 34 1 3 3 1
   122    -2  1 1 0 0 <A 4 33 1 3 3 1
   123    -1  1 1 0 1 B> 4 33 1 3 3 1
   124     0  1 1 0 1 0 B> 33 1 3 3 1
   125     1  1 1 0 1 0 0 A> 3 3 1 3 3 1
   126     0  1 1 0 1 0 0 <A 4 3 1 3 3 1
   127     1  1 1 0 1 0 1 B> 4 3 1 3 3 1
   128     2  1 1 0 1 0 1 0 B> 3 1 3 3 1
   129     3  1 1 0 1 0 1 0 0 A> 1 3 3 1
   130     2  1 1 0 1 0 1 0 0 <A 33 1
   131     3  1 1 0 1 0 1 0 1 B> 33 1
   132     4  1 1 0 1 0 1 0 1 0 A> 3 3 1
   133     3  1 1 0 1 0 1 0 1 0 <A 4 3 1
   134     4  1 1 0 1 0 1 0 1 1 B> 4 3 1
   135     5  1 1 0 1 0 1 0 1 1 0 B> 3 1
   136     6  1 1 0 1 0 1 0 1 1 0 0 A> 1
   137     5  1 1 0 1 0 1 0 1 1 0 0 <A 3
   138     6  1 1 0 1 0 1 0 1 1 0 1 B> 3
   139     7  1 1 0 1 0 1 0 1 1 0 1 0 A>
   140     8  1 1 0 1 0 1 0 1 1 0 1 0 1 B>
   141     7  1 1 0 1 0 1 0 1 1 0 1 0 1 <B 2
   142     8  1 1 0 1 0 1 0 1 1 0 1 0 2 A> 2
   143     7  1 1 0 1 0 1 0 1 1 0 1 0 2 <A 1
   144     6  1 1 0 1 0 1 0 1 1 0 1 0 <A 1 1
   145     7  1 1 0 1 0 1 0 1 1 0 1 1 B> 1 1
   146     8  1 1 0 1 0 1 0 1 1 0 1 1 2 A> 1
   147     7  1 1 0 1 0 1 0 1 1 0 1 1 2 <A 3
   148     6  1 1 0 1 0 1 0 1 1 0 1 1 <A 1 3
+  150     4  1 1 0 1 0 1 0 1 1 0 <A 3 3 1 3
   151     5  1 1 0 1 0 1 0 13 B> 3 3 1 3
   152     6  1 1 0 1 0 1 0 13 0 A> 3 1 3
   153     5  1 1 0 1 0 1 0 13 0 <A 4 1 3
   154     6  1 1 0 1 0 1 0 14 B> 4 1 3
   155     7  1 1 0 1 0 1 0 14 0 B> 1 3
   156     8  1 1 0 1 0 1 0 14 0 2 A> 3
   157     7  1 1 0 1 0 1 0 14 0 2 <A 4
   158     6  1 1 0 1 0 1 0 14 0 <A 1 4
   159     7  1 1 0 1 0 1 0 15 B> 1 4
   160     8  1 1 0 1 0 1 0 15 2 A> 4
   161     9  1 1 0 1 0 1 0 15 2 1 A>
   162    10  1 1 0 1 0 1 0 15 2 1 1 B>
   163     9  1 1 0 1 0 1 0 15 2 1 1 <B 2
   164    10  1 1 0 1 0 1 0 15 2 1 2 A> 2
   165     9  1 1 0 1 0 1 0 15 2 1 2 <A 1
   166     8  1 1 0 1 0 1 0 15 2 1 <A 1 1
   167     7  1 1 0 1 0 1 0 15 2 <A 3 1 1
   168     6  1 1 0 1 0 1 0 15 <A 1 3 1 1
+  173     1  1 1 0 1 0 1 0 <A 35 1 3 1 1
   174     2  1 1 0 1 0 1 1 B> 35 1 3 1 1
   175     3  1 1 0 1 0 1 1 0 A> 34 1 3 1 1
   176     2  1 1 0 1 0 1 1 0 <A 4 33 1 3 1 1
   177     3  1 1 0 1 0 13 B> 4 33 1 3 1 1
   178     4  1 1 0 1 0 13 0 B> 33 1 3 1 1
   179     5  1 1 0 1 0 13 0 0 A> 3 3 1 3 1 1
   180     4  1 1 0 1 0 13 0 0 <A 4 3 1 3 1 1
   181     5  1 1 0 1 0 13 0 1 B> 4 3 1 3 1 1
   182     6  1 1 0 1 0 13 0 1 0 B> 3 1 3 1 1
   183     7  1 1 0 1 0 13 0 1 0 0 A> 1 3 1 1
   184     6  1 1 0 1 0 13 0 1 0 0 <A 3 3 1 1
   185     7  1 1 0 1 0 13 0 1 0 1 B> 3 3 1 1
   186     8  1 1 0 1 0 13 0 1 0 1 0 A> 3 1 1
   187     7  1 1 0 1 0 13 0 1 0 1 0 <A 4 1 1
   188     8  1 1 0 1 0 13 0 1 0 1 1 B> 4 1 1
   189     9  1 1 0 1 0 13 0 1 0 1 1 0 B> 1 1
   190    10  1 1 0 1 0 13 0 1 0 1 1 0 2 A> 1
   191     9  1 1 0 1 0 13 0 1 0 1 1 0 2 <A 3
   192     8  1 1 0 1 0 13 0 1 0 1 1 0 <A 1 3
   193     9  1 1 0 1 0 13 0 1 0 13 B> 1 3
   194    10  1 1 0 1 0 13 0 1 0 13 2 A> 3
   195     9  1 1 0 1 0 13 0 1 0 13 2 <A 4
   196     8  1 1 0 1 0 13 0 1 0 13 <A 1 4
+  199     5  1 1 0 1 0 13 0 1 0 <A 33 1 4
   200     6  1 1 0 1 0 13 0 1 1 B> 33 1 4
   201     7  1 1 0 1 0 13 0 1 1 0 A> 3 3 1 4
   202     6  1 1 0 1 0 13 0 1 1 0 <A 4 3 1 4
   203     7  1 1 0 1 0 13 0 13 B> 4 3 1 4
   204     8  1 1 0 1 0 13 0 13 0 B> 3 1 4
   205     9  1 1 0 1 0 13 0 13 0 0 A> 1 4
   206     8  1 1 0 1 0 13 0 13 0 0 <A 3 4
   207     9  1 1 0 1 0 13 0 13 0 1 B> 3 4
   208    10  1 1 0 1 0 13 0 13 0 1 0 A> 4
   209    11  1 1 0 1 0 13 0 13 0 1 0 1 A>
   210    12  1 1 0 1 0 13 0 13 0 1 0 1 1 B>
   211    11  1 1 0 1 0 13 0 13 0 1 0 1 1 <B 2
   212    12  1 1 0 1 0 13 0 13 0 1 0 1 2 A> 2
   213    11  1 1 0 1 0 13 0 13 0 1 0 1 2 <A 1
   214    10  1 1 0 1 0 13 0 13 0 1 0 1 <A 1 1
   215     9  1 1 0 1 0 13 0 13 0 1 0 <A 3 1 1
   216    10  1 1 0 1 0 13 0 13 0 1 1 B> 3 1 1
   217    11  1 1 0 1 0 13 0 13 0 1 1 0 A> 1 1
   218    10  1 1 0 1 0 13 0 13 0 1 1 0 <A 3 1
   219    11  1 1 0 1 0 13 0 13 0 13 B> 3 1
   220    12  1 1 0 1 0 13 0 13 0 13 0 A> 1

After 220 steps (201 lines): state = A.
Produced     13 nonzeros.
Tape index 12, scanned [-5 .. 12].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 149 48 48 28 20 5 0 7 3 15 49
B 71 8 20   28 15 1 2   11 17
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 4-bck-bck-2-bck-2-bck-4-macro machine.
The same TM as 4-bck-bck-2-bck-2-bck-4-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:07 CEST 2010