Comment: This TM produces 143 nonzeros in 26,375,397,569,930 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | B1R | A3L | A1L | A4L | A1R | 1 | right | B | 3 | left | A | 1 | left | A | 4 | left | A | 1 | right | A |
B | B2L | A2R | Z1R | A0R | B0R | 2 | left | B | 2 | right | A | 1 | right | Z | 0 | right | A | 0 | right | B |
The same TM just simple. Simulation is done with repetitions reduced. The same TM with tape symbol exponents. The same TM as 4-bck-bck-2-bck-2-bck-4-macro machine. The same TM as 4-bck-bck-2-bck-2-bck-4-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . . 0 1 1 B . . . 10 2 0 B . . . 12 3 1 A . . . 22 + 5 -1 A . . .011 by A/2 * 2 6 0 B . . .111 7 1 A . . .121 8 0 A . . .123 9 -1 A . . .113 10 -2 A . . 0313 11 -1 B . . 1313 12 0 A . . 1013 13 -1 A . . 1033 14 0 B . . 1133 15 1 A . . 1103 16 0 A . . 1104 17 1 B . . 1114 18 2 B . . 11100 + 20 0 B . . 11122 by B/0 * 2 21 1 A . . 11222 + 23 -1 A . . 11112 by A/2 * 2 + 25 -3 A . .033112 by A/1 * 2 26 -2 B . .133112 27 -1 A . .103112 28 -2 A . .104112 29 -1 B . .114112 30 0 B . .110112 31 1 A . .110212 32 0 A . .110232 33 -1 A . .110132 34 0 B . .111132 35 1 A . .111232 36 0 A . .111242 37 -1 A . .111142 + 40 -4 A . 0333142 by A/1 * 3 41 -3 B . 1333142 42 -2 A . 1033142 43 -3 A . 1043142 44 -2 B . 1143142 45 -1 B . 1103142 46 0 A . 1100142 47 -1 A . 1100342 48 0 B . 1101342 49 1 A . 1101042 50 2 A . 1101012 51 1 A . 1101011 52 0 A . 1101031 53 1 B . 1101131 54 2 A . 1101101 55 1 A . 1101103 56 2 B . 1101113 57 3 A . 11011100 58 4 B . 110111010 59 3 B . 110111012 60 4 A . 110111022 + 62 2 A . 110111011 by A/2 * 2 63 3 B . 110111111 64 4 A . 110111121 65 3 A . 110111123 66 2 A . 110111113 + 70 -2 A . 110333313 by A/1 * 4 71 -1 B . 111333313 72 0 A . 111033313 73 -1 A . 111043313 74 0 B . 111143313 75 1 B . 111103313 76 2 A . 111100313 77 1 A . 111100413 78 2 B . 111101413 79 3 B . 111101013 80 4 A . 111101023 81 3 A . 111101024 82 2 A . 111101014 83 3 B . 111101114 84 4 A . 111101124 85 5 A . 1111011210 86 6 B . 11110112110 87 5 B . 11110112112 88 6 A . 11110112122 + 90 4 A . 11110112111 by A/2 * 2 91 3 A . 11110112311 92 2 A . 11110111311 + 94 0 A . 11110331311 by A/1 * 2 95 1 B . 11111331311 96 2 A . 11111031311 97 1 A . 11111041311 98 2 B . 11111141311 99 3 B . 11111101311 100 4 A . 11111102311 101 3 A . 11111102411 102 2 A . 11111101411 103 3 B . 11111111411 104 4 A . 11111112411 105 5 A . 11111112111 + 107 3 A . 11111112331 by A/1 * 2 108 2 A . 11111111331 + 115 -5 A .033333331331 by A/1 * 7 116 -4 B .133333331331 117 -3 A .103333331331 118 -4 A .104333331331 119 -3 B .114333331331 120 -2 B .110333331331 121 -1 A .110033331331 122 -2 A .110043331331 123 -1 B .110143331331 124 0 B .110103331331 125 1 A .110100331331 126 0 A .110100431331 127 1 B .110101431331 128 2 B .110101031331 129 3 A .110101001331 130 2 A .110101003331 131 3 B .110101013331 132 4 A .110101010331 133 3 A .110101010431 134 4 B .110101011431 135 5 B .110101011031 136 6 A .110101011001 137 5 A .110101011003 138 6 B .110101011013 139 7 A .1101010110100 140 8 B .11010101101010 141 7 B .11010101101012 142 8 A .11010101101022 + 144 6 A .11010101101011 by A/2 * 2 145 7 B .11010101101111 146 8 A .11010101101121 147 7 A .11010101101123 148 6 A .11010101101113 + 150 4 A .11010101103313 by A/1 * 2 151 5 B .11010101113313 152 6 A .11010101110313 153 5 A .11010101110413 154 6 B .11010101111413 155 7 B .11010101111013 156 8 A .11010101111023 157 7 A .11010101111024 158 6 A .11010101111014 159 7 B .11010101111114 160 8 A .11010101111124 161 9 A .110101011111210 162 10 B .1101010111112110 163 9 B .1101010111112112 164 10 A .1101010111112122 + 166 8 A .1101010111112111 by A/2 * 2 167 7 A .1101010111112311 168 6 A .1101010111111311 + 173 1 A .1101010333331311 by A/1 * 5 174 2 B .1101011333331311 175 3 A .1101011033331311 176 2 A .1101011043331311 177 3 B .1101011143331311 178 4 B .1101011103331311 179 5 A .1101011100331311 180 4 A .1101011100431311 181 5 B .1101011101431311 182 6 B .1101011101031311 183 7 A .1101011101001311 184 6 A .1101011101003311 185 7 B .1101011101013311 186 8 A .1101011101010311 187 7 A .1101011101010411 188 8 B .1101011101011411 189 9 B .1101011101011011 190 10 A .1101011101011021 191 9 A .1101011101011023 192 8 A .1101011101011013 193 9 B .1101011101011113 194 10 A .1101011101011123 195 9 A .1101011101011124 196 8 A .1101011101011114 + 199 5 A .1101011101033314 by A/1 * 3 200 6 B .1101011101133314 201 7 A .1101011101103314 202 6 A .1101011101104314 203 7 B .1101011101114314 204 8 B .1101011101110314 205 9 A .1101011101110014 206 8 A .1101011101110034 207 9 B .1101011101110134 208 10 A .1101011101110104 209 11 A .11010111011101010 210 12 B .110101110111010110 211 11 B .110101110111010112 212 12 A .110101110111010122 + 214 10 A .110101110111010111 by A/2 * 2 215 9 A .110101110111010311 216 10 B .110101110111011311 217 11 A .110101110111011011 218 10 A .110101110111011031 219 11 B .110101110111011131 220 12 A .110101110111011101 221 11 A .110101110111011103 222 12 B .110101110111011113 223 13 A .1101011101110111100 224 14 B .11010111011101111010 225 13 B .11010111011101111012 226 14 A .11010111011101111022 + 228 12 A .11010111011101111011 by A/2 * 2 229 13 B .11010111011101111111 230 14 A .11010111011101111121 After 230 steps (201 lines): state = A. Produced 16 nonzeros. Tape index 14, scanned [-5 .. 14].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 155 | 51 | 49 | 30 | 20 | 5 | 0 | 7 | 3 | 15 | 49 |
B | 75 | 9 | 22 | 29 | 15 | 1 | 2 | 11 | 17 |