2-state 5-symbol TM #i (G. Lafitte & C. Papazian)

Comment: This TM produces 4,848,239 nonzeros in 14,103,258,269,249 steps.

State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A B1R B3L B4L A4L A2R 1 right B 3 left B 4 left B 4 left A 2 right A
B A2L Z4L B3R A4R B3R 2 left A 4 left Z 3 right B 4 right A 3 right B
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing macro factor 1.

Steps BasSteps BasTpos  Tape contents
    0        0       0  A>
    1        1       1  1 B>
    2        2       0  1 <A 2
    3        3      -1  <B 3 2
    4        4      -2  <A 2 3 2
    5        5      -1  1 B> 2 3 2
    6        6       0  1 3 B> 3 2
    7        7       1  1 3 4 A> 2
    8        8       0  1 3 4 <B 4
    9        9       1  1 32 B> 4
   10       10       2  1 33 B>
   11       11       1  1 33 <A 2
   12       14      -2  1 <A 43 2
   13       15      -3  <B 3 43 2
   14       16      -4  <A 2 3 43 2
   15       17      -3  1 B> 2 3 43 2
   16       18      -2  1 3 B> 3 43 2
   17       19      -1  1 3 4 A> 43 2
   18       22       2  1 3 4 23 A> 2
   19       23       1  1 3 4 23 <B 4
   20       24       2  1 3 4 22 3 B> 4
   21       25       3  1 3 4 22 32 B>
   22       26       2  1 3 4 22 32 <A 2
   23       28       0  1 3 4 22 <A 42 2
   24       29      -1  1 3 4 2 <B 43 2
   25       30       0  1 3 4 3 B> 43 2
   26       33       3  1 3 4 34 B> 2
   27       34       4  1 3 4 35 B>
   28       35       3  1 3 4 35 <A 2
   29       40      -2  1 3 4 <A 45 2
   30       41      -1  1 3 2 A> 45 2
   31       46       4  1 3 26 A> 2
   32       47       3  1 3 26 <B 4
   33       48       4  1 3 25 3 B> 4
   34       49       5  1 3 25 32 B>
   35       50       4  1 3 25 32 <A 2
   36       52       2  1 3 25 <A 42 2
   37       53       1  1 3 24 <B 43 2
   38       54       2  1 3 23 3 B> 43 2
   39       57       5  1 3 23 34 B> 2
   40       58       6  1 3 23 35 B>
   41       59       5  1 3 23 35 <A 2
   42       64       0  1 3 23 <A 45 2
   43       65      -1  1 3 22 <B 46 2
   44       66       0  1 3 2 3 B> 46 2
   45       72       6  1 3 2 37 B> 2
   46       73       7  1 3 2 38 B>
   47       74       6  1 3 2 38 <A 2
   48       82      -2  1 3 2 <A 48 2
   49       83      -3  1 3 <B 49 2
   50       84      -2  1 4 A> 49 2
   51       93       7  1 4 29 A> 2
   52       94       6  1 4 29 <B 4
   53       95       7  1 4 28 3 B> 4
   54       96       8  1 4 28 32 B>
   55       97       7  1 4 28 32 <A 2
   56       99       5  1 4 28 <A 42 2
   57      100       4  1 4 27 <B 43 2
   58      101       5  1 4 26 3 B> 43 2
   59      104       8  1 4 26 34 B> 2
   60      105       9  1 4 26 35 B>
   61      106       8  1 4 26 35 <A 2
   62      111       3  1 4 26 <A 45 2
   63      112       2  1 4 25 <B 46 2
   64      113       3  1 4 24 3 B> 46 2
   65      119       9  1 4 24 37 B> 2
   66      120      10  1 4 24 38 B>
   67      121       9  1 4 24 38 <A 2
   68      129       1  1 4 24 <A 48 2
   69      130       0  1 4 23 <B 49 2
   70      131       1  1 4 22 3 B> 49 2
   71      140      10  1 4 22 310 B> 2
   72      141      11  1 4 22 311 B>
   73      142      10  1 4 22 311 <A 2
   74      153      -1  1 4 22 <A 411 2
   75      154      -2  1 4 2 <B 412 2
   76      155      -1  1 4 3 B> 412 2
   77      167      11  1 4 313 B> 2
   78      168      12  1 4 314 B>
   79      169      11  1 4 314 <A 2
   80      183      -3  1 4 <A 414 2
   81      184      -2  1 2 A> 414 2
   82      198      12  1 215 A> 2
   83      199      11  1 215 <B 4
   84      200      12  1 214 3 B> 4
   85      201      13  1 214 32 B>
   86      202      12  1 214 32 <A 2
   87      204      10  1 214 <A 42 2
   88      205       9  1 213 <B 43 2
   89      206      10  1 212 3 B> 43 2
   90      209      13  1 212 34 B> 2
   91      210      14  1 212 35 B>
   92      211      13  1 212 35 <A 2
   93      216       8  1 212 <A 45 2
   94      217       7  1 211 <B 46 2
   95      218       8  1 210 3 B> 46 2
   96      224      14  1 210 37 B> 2
   97      225      15  1 210 38 B>
   98      226      14  1 210 38 <A 2
   99      234       6  1 210 <A 48 2
  100      235       5  1 29 <B 49 2
  101      236       6  1 28 3 B> 49 2
  102      245      15  1 28 310 B> 2
  103      246      16  1 28 311 B>
  104      247      15  1 28 311 <A 2
  105      258       4  1 28 <A 411 2
  106      259       3  1 27 <B 412 2
  107      260       4  1 26 3 B> 412 2
  108      272      16  1 26 313 B> 2
  109      273      17  1 26 314 B>
  110      274      16  1 26 314 <A 2
  111      288       2  1 26 <A 414 2
  112      289       1  1 25 <B 415 2
  113      290       2  1 24 3 B> 415 2
  114      305      17  1 24 316 B> 2
  115      306      18  1 24 317 B>
  116      307      17  1 24 317 <A 2
  117      324       0  1 24 <A 417 2
  118      325      -1  1 23 <B 418 2
  119      326       0  1 22 3 B> 418 2
  120      344      18  1 22 319 B> 2
  121      345      19  1 22 320 B>
  122      346      18  1 22 320 <A 2
  123      366      -2  1 22 <A 420 2
  124      367      -3  1 2 <B 421 2
  125      368      -2  1 3 B> 421 2
  126      389      19  1 322 B> 2
  127      390      20  1 323 B>
  128      391      19  1 323 <A 2
  129      414      -4  1 <A 423 2
  130      415      -5  <B 3 423 2
  131      416      -6  <A 2 3 423 2
  132      417      -5  1 B> 2 3 423 2
  133      418      -4  1 3 B> 3 423 2
  134      419      -3  1 3 4 A> 423 2
  135      442      20  1 3 4 223 A> 2
  136      443      19  1 3 4 223 <B 4
  137      444      20  1 3 4 222 3 B> 4
  138      445      21  1 3 4 222 32 B>
  139      446      20  1 3 4 222 32 <A 2
  140      448      18  1 3 4 222 <A 42 2
  141      449      17  1 3 4 221 <B 43 2
  142      450      18  1 3 4 220 3 B> 43 2
  143      453      21  1 3 4 220 34 B> 2
  144      454      22  1 3 4 220 35 B>
  145      455      21  1 3 4 220 35 <A 2
  146      460      16  1 3 4 220 <A 45 2
  147      461      15  1 3 4 219 <B 46 2
  148      462      16  1 3 4 218 3 B> 46 2
  149      468      22  1 3 4 218 37 B> 2
  150      469      23  1 3 4 218 38 B>
  151      470      22  1 3 4 218 38 <A 2
  152      478      14  1 3 4 218 <A 48 2
  153      479      13  1 3 4 217 <B 49 2
  154      480      14  1 3 4 216 3 B> 49 2
  155      489      23  1 3 4 216 310 B> 2
  156      490      24  1 3 4 216 311 B>
  157      491      23  1 3 4 216 311 <A 2
  158      502      12  1 3 4 216 <A 411 2
  159      503      11  1 3 4 215 <B 412 2
  160      504      12  1 3 4 214 3 B> 412 2
  161      516      24  1 3 4 214 313 B> 2
  162      517      25  1 3 4 214 314 B>
  163      518      24  1 3 4 214 314 <A 2
  164      532      10  1 3 4 214 <A 414 2
  165      533       9  1 3 4 213 <B 415 2
  166      534      10  1 3 4 212 3 B> 415 2
  167      549      25  1 3 4 212 316 B> 2
  168      550      26  1 3 4 212 317 B>
  169      551      25  1 3 4 212 317 <A 2
  170      568       8  1 3 4 212 <A 417 2
  171      569       7  1 3 4 211 <B 418 2
  172      570       8  1 3 4 210 3 B> 418 2
  173      588      26  1 3 4 210 319 B> 2
  174      589      27  1 3 4 210 320 B>
  175      590      26  1 3 4 210 320 <A 2
  176      610       6  1 3 4 210 <A 420 2
  177      611       5  1 3 4 29 <B 421 2
  178      612       6  1 3 4 28 3 B> 421 2
  179      633      27  1 3 4 28 322 B> 2
  180      634      28  1 3 4 28 323 B>
  181      635      27  1 3 4 28 323 <A 2
  182      658       4  1 3 4 28 <A 423 2
  183      659       3  1 3 4 27 <B 424 2
  184      660       4  1 3 4 26 3 B> 424 2
  185      684      28  1 3 4 26 325 B> 2
  186      685      29  1 3 4 26 326 B>
  187      686      28  1 3 4 26 326 <A 2
  188      712       2  1 3 4 26 <A 426 2
  189      713       1  1 3 4 25 <B 427 2
  190      714       2  1 3 4 24 3 B> 427 2
  191      741      29  1 3 4 24 328 B> 2
  192      742      30  1 3 4 24 329 B>
  193      743      29  1 3 4 24 329 <A 2
  194      772       0  1 3 4 24 <A 429 2
  195      773      -1  1 3 4 23 <B 430 2
  196      774       0  1 3 4 22 3 B> 430 2
  197      804      30  1 3 4 22 331 B> 2
  198      805      31  1 3 4 22 332 B>
  199      806      30  1 3 4 22 332 <A 2
  200      838      -2  1 3 4 22 <A 432 2

Lines:       201
Top steps:   200
Macro steps: 200
Basic steps: 838
Tape index:  -2
nonzeros:    38
log10(nonzeros):    1.580
log10(steps   ):    2.923

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    nbs 5
    T 2-state 5-symbol TM #i (G. Lafitte & C. Papazian)
    5T  B1R B3L B4L A4L A2R  A2L Z4L B3R A4R B3R
    : 4,848,239 14,103,258,269,249 
    L 6
    M	201
    pref	sim
    machv Laf25_i  	just simple
    machv Laf25_i-r	with repetitions reduced
    machv Laf25_i-1	with tape symbol exponents
    machv Laf25_i-m	as 1-macro machine
    machv Laf25_i-a	as 1-macro machine with pure additive config-TRs
    iam	Laf25_i-m
    mtype	1
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:12:06 CEST 2010
    edate	Tue Jul  6 22:12:06 CEST 2010
    bnspeed	1

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:12:06 CEST 2010
Ready: Tue Jul 6 22:12:06 CEST 2010