Comment: This TM produces 4,848,239 nonzeros in 14,103,258,269,249 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | B1R | B3L | B4L | A4L | A2R | 1 | right | B | 3 | left | B | 4 | left | B | 4 | left | A | 2 | right | A |
B | A2L | Z4L | B3R | A4R | B3R | 2 | left | A | 4 | left | Z | 3 | right | B | 4 | right | A | 3 | right | B |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 2 3 -1 <B 3 2 4 -2 <A 2 3 2 5 -1 1 B> 2 3 2 6 0 1 3 B> 3 2 7 1 1 3 4 A> 2 8 0 1 3 4 <B 4 9 1 1 3 3 B> 4 10 2 1 33 B> 11 1 1 33 <A 2 + 14 -2 1 <A 43 2 15 -3 <B 3 43 2 16 -4 <A 2 3 43 2 17 -3 1 B> 2 3 43 2 18 -2 1 3 B> 3 43 2 19 -1 1 3 4 A> 43 2 + 22 2 1 3 4 23 A> 2 23 1 1 3 4 23 <B 4 24 2 1 3 4 2 2 3 B> 4 25 3 1 3 4 2 2 3 3 B> 26 2 1 3 4 2 2 3 3 <A 2 + 28 0 1 3 4 2 2 <A 4 4 2 29 -1 1 3 4 2 <B 43 2 30 0 1 3 4 3 B> 43 2 + 33 3 1 3 4 34 B> 2 34 4 1 3 4 35 B> 35 3 1 3 4 35 <A 2 + 40 -2 1 3 4 <A 45 2 41 -1 1 3 2 A> 45 2 + 46 4 1 3 26 A> 2 47 3 1 3 26 <B 4 48 4 1 3 25 3 B> 4 49 5 1 3 25 3 3 B> 50 4 1 3 25 3 3 <A 2 + 52 2 1 3 25 <A 4 4 2 53 1 1 3 24 <B 43 2 54 2 1 3 23 3 B> 43 2 + 57 5 1 3 23 34 B> 2 58 6 1 3 23 35 B> 59 5 1 3 23 35 <A 2 + 64 0 1 3 23 <A 45 2 65 -1 1 3 2 2 <B 46 2 66 0 1 3 2 3 B> 46 2 + 72 6 1 3 2 37 B> 2 73 7 1 3 2 38 B> 74 6 1 3 2 38 <A 2 + 82 -2 1 3 2 <A 48 2 83 -3 1 3 <B 49 2 84 -2 1 4 A> 49 2 + 93 7 1 4 29 A> 2 94 6 1 4 29 <B 4 95 7 1 4 28 3 B> 4 96 8 1 4 28 3 3 B> 97 7 1 4 28 3 3 <A 2 + 99 5 1 4 28 <A 4 4 2 100 4 1 4 27 <B 43 2 101 5 1 4 26 3 B> 43 2 + 104 8 1 4 26 34 B> 2 105 9 1 4 26 35 B> 106 8 1 4 26 35 <A 2 + 111 3 1 4 26 <A 45 2 112 2 1 4 25 <B 46 2 113 3 1 4 24 3 B> 46 2 + 119 9 1 4 24 37 B> 2 120 10 1 4 24 38 B> 121 9 1 4 24 38 <A 2 + 129 1 1 4 24 <A 48 2 130 0 1 4 23 <B 49 2 131 1 1 4 2 2 3 B> 49 2 + 140 10 1 4 2 2 310 B> 2 141 11 1 4 2 2 311 B> 142 10 1 4 2 2 311 <A 2 + 153 -1 1 4 2 2 <A 411 2 154 -2 1 4 2 <B 412 2 155 -1 1 4 3 B> 412 2 + 167 11 1 4 313 B> 2 168 12 1 4 314 B> 169 11 1 4 314 <A 2 + 183 -3 1 4 <A 414 2 184 -2 1 2 A> 414 2 + 198 12 1 215 A> 2 199 11 1 215 <B 4 200 12 1 214 3 B> 4 201 13 1 214 3 3 B> 202 12 1 214 3 3 <A 2 + 204 10 1 214 <A 4 4 2 205 9 1 213 <B 43 2 206 10 1 212 3 B> 43 2 + 209 13 1 212 34 B> 2 210 14 1 212 35 B> 211 13 1 212 35 <A 2 + 216 8 1 212 <A 45 2 217 7 1 211 <B 46 2 218 8 1 210 3 B> 46 2 + 224 14 1 210 37 B> 2 225 15 1 210 38 B> 226 14 1 210 38 <A 2 + 234 6 1 210 <A 48 2 235 5 1 29 <B 49 2 236 6 1 28 3 B> 49 2 + 245 15 1 28 310 B> 2 246 16 1 28 311 B> 247 15 1 28 311 <A 2 + 258 4 1 28 <A 411 2 259 3 1 27 <B 412 2 260 4 1 26 3 B> 412 2 + 272 16 1 26 313 B> 2 273 17 1 26 314 B> 274 16 1 26 314 <A 2 + 288 2 1 26 <A 414 2 289 1 1 25 <B 415 2 290 2 1 24 3 B> 415 2 + 305 17 1 24 316 B> 2 306 18 1 24 317 B> 307 17 1 24 317 <A 2 + 324 0 1 24 <A 417 2 325 -1 1 23 <B 418 2 326 0 1 2 2 3 B> 418 2 + 344 18 1 2 2 319 B> 2 345 19 1 2 2 320 B> 346 18 1 2 2 320 <A 2 + 366 -2 1 2 2 <A 420 2 367 -3 1 2 <B 421 2 368 -2 1 3 B> 421 2 + 389 19 1 322 B> 2 390 20 1 323 B> 391 19 1 323 <A 2 + 414 -4 1 <A 423 2 415 -5 <B 3 423 2 416 -6 <A 2 3 423 2 417 -5 1 B> 2 3 423 2 418 -4 1 3 B> 3 423 2 419 -3 1 3 4 A> 423 2 + 442 20 1 3 4 223 A> 2 443 19 1 3 4 223 <B 4 444 20 1 3 4 222 3 B> 4 445 21 1 3 4 222 3 3 B> 446 20 1 3 4 222 3 3 <A 2 + 448 18 1 3 4 222 <A 4 4 2 449 17 1 3 4 221 <B 43 2 450 18 1 3 4 220 3 B> 43 2 + 453 21 1 3 4 220 34 B> 2 454 22 1 3 4 220 35 B> 455 21 1 3 4 220 35 <A 2 + 460 16 1 3 4 220 <A 45 2 461 15 1 3 4 219 <B 46 2 462 16 1 3 4 218 3 B> 46 2 + 468 22 1 3 4 218 37 B> 2 469 23 1 3 4 218 38 B> 470 22 1 3 4 218 38 <A 2 + 478 14 1 3 4 218 <A 48 2 479 13 1 3 4 217 <B 49 2 480 14 1 3 4 216 3 B> 49 2 + 489 23 1 3 4 216 310 B> 2 490 24 1 3 4 216 311 B> 491 23 1 3 4 216 311 <A 2 + 502 12 1 3 4 216 <A 411 2 503 11 1 3 4 215 <B 412 2 504 12 1 3 4 214 3 B> 412 2 + 516 24 1 3 4 214 313 B> 2 517 25 1 3 4 214 314 B> 518 24 1 3 4 214 314 <A 2 + 532 10 1 3 4 214 <A 414 2 533 9 1 3 4 213 <B 415 2 534 10 1 3 4 212 3 B> 415 2 + 549 25 1 3 4 212 316 B> 2 550 26 1 3 4 212 317 B> 551 25 1 3 4 212 317 <A 2 + 568 8 1 3 4 212 <A 417 2 569 7 1 3 4 211 <B 418 2 570 8 1 3 4 210 3 B> 418 2 + 588 26 1 3 4 210 319 B> 2 589 27 1 3 4 210 320 B> 590 26 1 3 4 210 320 <A 2 + 610 6 1 3 4 210 <A 420 2 611 5 1 3 4 29 <B 421 2 612 6 1 3 4 28 3 B> 421 2 + 633 27 1 3 4 28 322 B> 2 634 28 1 3 4 28 323 B> 635 27 1 3 4 28 323 <A 2 + 658 4 1 3 4 28 <A 423 2 659 3 1 3 4 27 <B 424 2 660 4 1 3 4 26 3 B> 424 2 + 684 28 1 3 4 26 325 B> 2 685 29 1 3 4 26 326 B> 686 28 1 3 4 26 326 <A 2 + 712 2 1 3 4 26 <A 426 2 713 1 1 3 4 25 <B 427 2 714 2 1 3 4 24 3 B> 427 2 + 741 29 1 3 4 24 328 B> 2 742 30 1 3 4 24 329 B> 743 29 1 3 4 24 329 <A 2 + 772 0 1 3 4 24 <A 429 2 773 -1 1 3 4 23 <B 430 2 774 0 1 3 4 2 2 3 B> 430 2 + 804 30 1 3 4 2 2 331 B> 2 805 31 1 3 4 2 2 332 B> 806 30 1 3 4 2 2 332 <A 2 + 838 -2 1 3 4 2 2 <A 432 2 After 838 steps (201 lines): state = A. Produced 38 nonzeros. Tape index -2, scanned [-6 .. 31].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 446 | 4 | 3 | 31 | 352 | 56 | 0 | 2 | 7 | 11 | 19 |
B | 392 | 34 | 56 | 4 | 298 | 1 | 5 | 6 | 8 |