Comment: This TM produces 4,848,239 nonzeros in 14,103,258,269,249 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | B1R | B3L | B4L | A4L | A2R | 1 | right | B | 3 | left | B | 4 | left | B | 4 | left | A | 2 | right | A |
| B | A2L | Z4L | B3R | A4R | B3R | 2 | left | A | 4 | left | Z | 3 | right | B | 4 | right | A | 3 | right | B |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A 2
3 -1 <B 3 2
4 -2 <A 2 3 2
5 -1 1 B> 2 3 2
6 0 1 3 B> 3 2
7 1 1 3 4 A> 2
8 0 1 3 4 <B 4
9 1 1 3 3 B> 4
10 2 1 33 B>
11 1 1 33 <A 2
+ 14 -2 1 <A 43 2
15 -3 <B 3 43 2
16 -4 <A 2 3 43 2
17 -3 1 B> 2 3 43 2
18 -2 1 3 B> 3 43 2
19 -1 1 3 4 A> 43 2
+ 22 2 1 3 4 23 A> 2
23 1 1 3 4 23 <B 4
24 2 1 3 4 2 2 3 B> 4
25 3 1 3 4 2 2 3 3 B>
26 2 1 3 4 2 2 3 3 <A 2
+ 28 0 1 3 4 2 2 <A 4 4 2
29 -1 1 3 4 2 <B 43 2
30 0 1 3 4 3 B> 43 2
+ 33 3 1 3 4 34 B> 2
34 4 1 3 4 35 B>
35 3 1 3 4 35 <A 2
+ 40 -2 1 3 4 <A 45 2
41 -1 1 3 2 A> 45 2
+ 46 4 1 3 26 A> 2
47 3 1 3 26 <B 4
48 4 1 3 25 3 B> 4
49 5 1 3 25 3 3 B>
50 4 1 3 25 3 3 <A 2
+ 52 2 1 3 25 <A 4 4 2
53 1 1 3 24 <B 43 2
54 2 1 3 23 3 B> 43 2
+ 57 5 1 3 23 34 B> 2
58 6 1 3 23 35 B>
59 5 1 3 23 35 <A 2
+ 64 0 1 3 23 <A 45 2
65 -1 1 3 2 2 <B 46 2
66 0 1 3 2 3 B> 46 2
+ 72 6 1 3 2 37 B> 2
73 7 1 3 2 38 B>
74 6 1 3 2 38 <A 2
+ 82 -2 1 3 2 <A 48 2
83 -3 1 3 <B 49 2
84 -2 1 4 A> 49 2
+ 93 7 1 4 29 A> 2
94 6 1 4 29 <B 4
95 7 1 4 28 3 B> 4
96 8 1 4 28 3 3 B>
97 7 1 4 28 3 3 <A 2
+ 99 5 1 4 28 <A 4 4 2
100 4 1 4 27 <B 43 2
101 5 1 4 26 3 B> 43 2
+ 104 8 1 4 26 34 B> 2
105 9 1 4 26 35 B>
106 8 1 4 26 35 <A 2
+ 111 3 1 4 26 <A 45 2
112 2 1 4 25 <B 46 2
113 3 1 4 24 3 B> 46 2
+ 119 9 1 4 24 37 B> 2
120 10 1 4 24 38 B>
121 9 1 4 24 38 <A 2
+ 129 1 1 4 24 <A 48 2
130 0 1 4 23 <B 49 2
131 1 1 4 2 2 3 B> 49 2
+ 140 10 1 4 2 2 310 B> 2
141 11 1 4 2 2 311 B>
142 10 1 4 2 2 311 <A 2
+ 153 -1 1 4 2 2 <A 411 2
154 -2 1 4 2 <B 412 2
155 -1 1 4 3 B> 412 2
+ 167 11 1 4 313 B> 2
168 12 1 4 314 B>
169 11 1 4 314 <A 2
+ 183 -3 1 4 <A 414 2
184 -2 1 2 A> 414 2
+ 198 12 1 215 A> 2
199 11 1 215 <B 4
200 12 1 214 3 B> 4
201 13 1 214 3 3 B>
202 12 1 214 3 3 <A 2
+ 204 10 1 214 <A 4 4 2
205 9 1 213 <B 43 2
206 10 1 212 3 B> 43 2
+ 209 13 1 212 34 B> 2
210 14 1 212 35 B>
211 13 1 212 35 <A 2
+ 216 8 1 212 <A 45 2
217 7 1 211 <B 46 2
218 8 1 210 3 B> 46 2
+ 224 14 1 210 37 B> 2
225 15 1 210 38 B>
226 14 1 210 38 <A 2
+ 234 6 1 210 <A 48 2
235 5 1 29 <B 49 2
236 6 1 28 3 B> 49 2
+ 245 15 1 28 310 B> 2
246 16 1 28 311 B>
247 15 1 28 311 <A 2
+ 258 4 1 28 <A 411 2
259 3 1 27 <B 412 2
260 4 1 26 3 B> 412 2
+ 272 16 1 26 313 B> 2
273 17 1 26 314 B>
274 16 1 26 314 <A 2
+ 288 2 1 26 <A 414 2
289 1 1 25 <B 415 2
290 2 1 24 3 B> 415 2
+ 305 17 1 24 316 B> 2
306 18 1 24 317 B>
307 17 1 24 317 <A 2
+ 324 0 1 24 <A 417 2
325 -1 1 23 <B 418 2
326 0 1 2 2 3 B> 418 2
+ 344 18 1 2 2 319 B> 2
345 19 1 2 2 320 B>
346 18 1 2 2 320 <A 2
+ 366 -2 1 2 2 <A 420 2
367 -3 1 2 <B 421 2
368 -2 1 3 B> 421 2
+ 389 19 1 322 B> 2
390 20 1 323 B>
391 19 1 323 <A 2
+ 414 -4 1 <A 423 2
415 -5 <B 3 423 2
416 -6 <A 2 3 423 2
417 -5 1 B> 2 3 423 2
418 -4 1 3 B> 3 423 2
419 -3 1 3 4 A> 423 2
+ 442 20 1 3 4 223 A> 2
443 19 1 3 4 223 <B 4
444 20 1 3 4 222 3 B> 4
445 21 1 3 4 222 3 3 B>
446 20 1 3 4 222 3 3 <A 2
+ 448 18 1 3 4 222 <A 4 4 2
449 17 1 3 4 221 <B 43 2
450 18 1 3 4 220 3 B> 43 2
+ 453 21 1 3 4 220 34 B> 2
454 22 1 3 4 220 35 B>
455 21 1 3 4 220 35 <A 2
+ 460 16 1 3 4 220 <A 45 2
461 15 1 3 4 219 <B 46 2
462 16 1 3 4 218 3 B> 46 2
+ 468 22 1 3 4 218 37 B> 2
469 23 1 3 4 218 38 B>
470 22 1 3 4 218 38 <A 2
+ 478 14 1 3 4 218 <A 48 2
479 13 1 3 4 217 <B 49 2
480 14 1 3 4 216 3 B> 49 2
+ 489 23 1 3 4 216 310 B> 2
490 24 1 3 4 216 311 B>
491 23 1 3 4 216 311 <A 2
+ 502 12 1 3 4 216 <A 411 2
503 11 1 3 4 215 <B 412 2
504 12 1 3 4 214 3 B> 412 2
+ 516 24 1 3 4 214 313 B> 2
517 25 1 3 4 214 314 B>
518 24 1 3 4 214 314 <A 2
+ 532 10 1 3 4 214 <A 414 2
533 9 1 3 4 213 <B 415 2
534 10 1 3 4 212 3 B> 415 2
+ 549 25 1 3 4 212 316 B> 2
550 26 1 3 4 212 317 B>
551 25 1 3 4 212 317 <A 2
+ 568 8 1 3 4 212 <A 417 2
569 7 1 3 4 211 <B 418 2
570 8 1 3 4 210 3 B> 418 2
+ 588 26 1 3 4 210 319 B> 2
589 27 1 3 4 210 320 B>
590 26 1 3 4 210 320 <A 2
+ 610 6 1 3 4 210 <A 420 2
611 5 1 3 4 29 <B 421 2
612 6 1 3 4 28 3 B> 421 2
+ 633 27 1 3 4 28 322 B> 2
634 28 1 3 4 28 323 B>
635 27 1 3 4 28 323 <A 2
+ 658 4 1 3 4 28 <A 423 2
659 3 1 3 4 27 <B 424 2
660 4 1 3 4 26 3 B> 424 2
+ 684 28 1 3 4 26 325 B> 2
685 29 1 3 4 26 326 B>
686 28 1 3 4 26 326 <A 2
+ 712 2 1 3 4 26 <A 426 2
713 1 1 3 4 25 <B 427 2
714 2 1 3 4 24 3 B> 427 2
+ 741 29 1 3 4 24 328 B> 2
742 30 1 3 4 24 329 B>
743 29 1 3 4 24 329 <A 2
+ 772 0 1 3 4 24 <A 429 2
773 -1 1 3 4 23 <B 430 2
774 0 1 3 4 2 2 3 B> 430 2
+ 804 30 1 3 4 2 2 331 B> 2
805 31 1 3 4 2 2 332 B>
806 30 1 3 4 2 2 332 <A 2
+ 838 -2 1 3 4 2 2 <A 432 2
After 838 steps (201 lines): state = A.
Produced 38 nonzeros.
Tape index -2, scanned [-6 .. 31].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 446 | 4 | 3 | 31 | 352 | 56 | 0 | 2 | 7 | 11 | 19 |
| B | 392 | 34 | 56 | 4 | 298 | 1 | 5 | 6 | 8 | ||