2-state 5-symbol TM #i (G. Lafitte & C. Papazian)

Comment: This TM produces 4,848,239 nonzeros in 14,103,258,269,249 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A B1R B3L B4L A4L A2R 1 right B 3 left B 4 left B 4 left A 2 right A
B A2L Z4L B3R A4R B3R 2 left A 4 left Z 3 right B 4 right A 3 right B
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     0  1 <A 2
     3    -1  <B 3 2
     4    -2  <A 2 3 2
     5    -1  1 B> 2 3 2
     6     0  1 3 B> 3 2
     7     1  1 3 4 A> 2
     8     0  1 3 4 <B 4
     9     1  1 3 3 B> 4
    10     2  1 33 B>
    11     1  1 33 <A 2
+   14    -2  1 <A 43 2
    15    -3  <B 3 43 2
    16    -4  <A 2 3 43 2
    17    -3  1 B> 2 3 43 2
    18    -2  1 3 B> 3 43 2
    19    -1  1 3 4 A> 43 2
+   22     2  1 3 4 23 A> 2
    23     1  1 3 4 23 <B 4
    24     2  1 3 4 2 2 3 B> 4
    25     3  1 3 4 2 2 3 3 B>
    26     2  1 3 4 2 2 3 3 <A 2
+   28     0  1 3 4 2 2 <A 4 4 2
    29    -1  1 3 4 2 <B 43 2
    30     0  1 3 4 3 B> 43 2
+   33     3  1 3 4 34 B> 2
    34     4  1 3 4 35 B>
    35     3  1 3 4 35 <A 2
+   40    -2  1 3 4 <A 45 2
    41    -1  1 3 2 A> 45 2
+   46     4  1 3 26 A> 2
    47     3  1 3 26 <B 4
    48     4  1 3 25 3 B> 4
    49     5  1 3 25 3 3 B>
    50     4  1 3 25 3 3 <A 2
+   52     2  1 3 25 <A 4 4 2
    53     1  1 3 24 <B 43 2
    54     2  1 3 23 3 B> 43 2
+   57     5  1 3 23 34 B> 2
    58     6  1 3 23 35 B>
    59     5  1 3 23 35 <A 2
+   64     0  1 3 23 <A 45 2
    65    -1  1 3 2 2 <B 46 2
    66     0  1 3 2 3 B> 46 2
+   72     6  1 3 2 37 B> 2
    73     7  1 3 2 38 B>
    74     6  1 3 2 38 <A 2
+   82    -2  1 3 2 <A 48 2
    83    -3  1 3 <B 49 2
    84    -2  1 4 A> 49 2
+   93     7  1 4 29 A> 2
    94     6  1 4 29 <B 4
    95     7  1 4 28 3 B> 4
    96     8  1 4 28 3 3 B>
    97     7  1 4 28 3 3 <A 2
+   99     5  1 4 28 <A 4 4 2
   100     4  1 4 27 <B 43 2
   101     5  1 4 26 3 B> 43 2
+  104     8  1 4 26 34 B> 2
   105     9  1 4 26 35 B>
   106     8  1 4 26 35 <A 2
+  111     3  1 4 26 <A 45 2
   112     2  1 4 25 <B 46 2
   113     3  1 4 24 3 B> 46 2
+  119     9  1 4 24 37 B> 2
   120    10  1 4 24 38 B>
   121     9  1 4 24 38 <A 2
+  129     1  1 4 24 <A 48 2
   130     0  1 4 23 <B 49 2
   131     1  1 4 2 2 3 B> 49 2
+  140    10  1 4 2 2 310 B> 2
   141    11  1 4 2 2 311 B>
   142    10  1 4 2 2 311 <A 2
+  153    -1  1 4 2 2 <A 411 2
   154    -2  1 4 2 <B 412 2
   155    -1  1 4 3 B> 412 2
+  167    11  1 4 313 B> 2
   168    12  1 4 314 B>
   169    11  1 4 314 <A 2
+  183    -3  1 4 <A 414 2
   184    -2  1 2 A> 414 2
+  198    12  1 215 A> 2
   199    11  1 215 <B 4
   200    12  1 214 3 B> 4
   201    13  1 214 3 3 B>
   202    12  1 214 3 3 <A 2
+  204    10  1 214 <A 4 4 2
   205     9  1 213 <B 43 2
   206    10  1 212 3 B> 43 2
+  209    13  1 212 34 B> 2
   210    14  1 212 35 B>
   211    13  1 212 35 <A 2
+  216     8  1 212 <A 45 2
   217     7  1 211 <B 46 2
   218     8  1 210 3 B> 46 2
+  224    14  1 210 37 B> 2
   225    15  1 210 38 B>
   226    14  1 210 38 <A 2
+  234     6  1 210 <A 48 2
   235     5  1 29 <B 49 2
   236     6  1 28 3 B> 49 2
+  245    15  1 28 310 B> 2
   246    16  1 28 311 B>
   247    15  1 28 311 <A 2
+  258     4  1 28 <A 411 2
   259     3  1 27 <B 412 2
   260     4  1 26 3 B> 412 2
+  272    16  1 26 313 B> 2
   273    17  1 26 314 B>
   274    16  1 26 314 <A 2
+  288     2  1 26 <A 414 2
   289     1  1 25 <B 415 2
   290     2  1 24 3 B> 415 2
+  305    17  1 24 316 B> 2
   306    18  1 24 317 B>
   307    17  1 24 317 <A 2
+  324     0  1 24 <A 417 2
   325    -1  1 23 <B 418 2
   326     0  1 2 2 3 B> 418 2
+  344    18  1 2 2 319 B> 2
   345    19  1 2 2 320 B>
   346    18  1 2 2 320 <A 2
+  366    -2  1 2 2 <A 420 2
   367    -3  1 2 <B 421 2
   368    -2  1 3 B> 421 2
+  389    19  1 322 B> 2
   390    20  1 323 B>
   391    19  1 323 <A 2
+  414    -4  1 <A 423 2
   415    -5  <B 3 423 2
   416    -6  <A 2 3 423 2
   417    -5  1 B> 2 3 423 2
   418    -4  1 3 B> 3 423 2
   419    -3  1 3 4 A> 423 2
+  442    20  1 3 4 223 A> 2
   443    19  1 3 4 223 <B 4
   444    20  1 3 4 222 3 B> 4
   445    21  1 3 4 222 3 3 B>
   446    20  1 3 4 222 3 3 <A 2
+  448    18  1 3 4 222 <A 4 4 2
   449    17  1 3 4 221 <B 43 2
   450    18  1 3 4 220 3 B> 43 2
+  453    21  1 3 4 220 34 B> 2
   454    22  1 3 4 220 35 B>
   455    21  1 3 4 220 35 <A 2
+  460    16  1 3 4 220 <A 45 2
   461    15  1 3 4 219 <B 46 2
   462    16  1 3 4 218 3 B> 46 2
+  468    22  1 3 4 218 37 B> 2
   469    23  1 3 4 218 38 B>
   470    22  1 3 4 218 38 <A 2
+  478    14  1 3 4 218 <A 48 2
   479    13  1 3 4 217 <B 49 2
   480    14  1 3 4 216 3 B> 49 2
+  489    23  1 3 4 216 310 B> 2
   490    24  1 3 4 216 311 B>
   491    23  1 3 4 216 311 <A 2
+  502    12  1 3 4 216 <A 411 2
   503    11  1 3 4 215 <B 412 2
   504    12  1 3 4 214 3 B> 412 2
+  516    24  1 3 4 214 313 B> 2
   517    25  1 3 4 214 314 B>
   518    24  1 3 4 214 314 <A 2
+  532    10  1 3 4 214 <A 414 2
   533     9  1 3 4 213 <B 415 2
   534    10  1 3 4 212 3 B> 415 2
+  549    25  1 3 4 212 316 B> 2
   550    26  1 3 4 212 317 B>
   551    25  1 3 4 212 317 <A 2
+  568     8  1 3 4 212 <A 417 2
   569     7  1 3 4 211 <B 418 2
   570     8  1 3 4 210 3 B> 418 2
+  588    26  1 3 4 210 319 B> 2
   589    27  1 3 4 210 320 B>
   590    26  1 3 4 210 320 <A 2
+  610     6  1 3 4 210 <A 420 2
   611     5  1 3 4 29 <B 421 2
   612     6  1 3 4 28 3 B> 421 2
+  633    27  1 3 4 28 322 B> 2
   634    28  1 3 4 28 323 B>
   635    27  1 3 4 28 323 <A 2
+  658     4  1 3 4 28 <A 423 2
   659     3  1 3 4 27 <B 424 2
   660     4  1 3 4 26 3 B> 424 2
+  684    28  1 3 4 26 325 B> 2
   685    29  1 3 4 26 326 B>
   686    28  1 3 4 26 326 <A 2
+  712     2  1 3 4 26 <A 426 2
   713     1  1 3 4 25 <B 427 2
   714     2  1 3 4 24 3 B> 427 2
+  741    29  1 3 4 24 328 B> 2
   742    30  1 3 4 24 329 B>
   743    29  1 3 4 24 329 <A 2
+  772     0  1 3 4 24 <A 429 2
   773    -1  1 3 4 23 <B 430 2
   774     0  1 3 4 2 2 3 B> 430 2
+  804    30  1 3 4 2 2 331 B> 2
   805    31  1 3 4 2 2 332 B>
   806    30  1 3 4 2 2 332 <A 2
+  838    -2  1 3 4 2 2 <A 432 2

After 838 steps (201 lines): state = A.
Produced     38 nonzeros.
Tape index -2, scanned [-6 .. 31].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 446 4 3 31 352 56 0 2 7 11 19
B 392 34   56 4 298 1   5 6 8
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:06 CEST 2010