2-state 5-symbol TM #b (G. Lafitte & C. Papazian)

Comment: This TM produces 64'665 nonzeros in 4'561'535'055 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A B1R B2R A3L A2R A3R 1 right B 2 right B 3 left A 2 right A 3 right A
B B2L A2L A1L B4R Z1R 2 left B 2 left A 1 left A 4 right B 1 right Z
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . 0
     1    1 B . . 10
     2    0 B . . 12
     3   -1 A . .022
     4    0 B . .122
     5   -1 A . .112
     6    0 B . .212
     7   -1 A . .222
     8   -2 A . 0322
     9   -1 B . 1322
    10    0 B . 1422
    11   -1 A . 1412
    12    0 A . 1312
    13    1 B . 1322
    14    0 A . 1321
    15   -1 A . 1331
    16    0 A . 1231
    17    1 A . 1221
    18    2 B . 12220
    19    1 B . 12222
    20    0 A . 12212
    21   -1 A . 12312
    22   -2 A . 13312
    23   -1 B . 23312
    24    0 B . 24312
    25    1 B . 24412
    26    0 A . 24422
    27    1 A . 24322
    28    0 A . 24332
    29    1 A . 24232
    30    2 A . 24222
    31    1 A . 24223
    32    0 A . 24233
    33   -1 A . 24333
    34    0 A . 23333
    35    1 A . 23233
    36    2 A . 23223
    37    3 A . 232220
    38    4 B . 2322210
    39    3 B . 2322212
    40    2 A . 2322222
    41    1 A . 2322322
    42    0 A . 2323322
    43   -1 A . 2333322
    44    0 A . 2233322
    45    1 A . 2223322
    46    2 A . 2222322
    47    3 A . 2222222
    48    2 A . 2222232
    49    1 A . 2222332
    50    0 A . 2223332
    51   -1 A . 2233332
    52   -2 A . 2333332
    53   -3 A .03333332
    54   -2 B .13333332
    55   -1 B .14333332
    56    0 B .14433332
    57    1 B .14443332
    58    2 B .14444332
    59    3 B .14444432
    60    4 B .14444442
    61    3 A .14444441
    62    4 A .14444431
    63    5 B .144444320
    64    4 B .144444322
    65    3 A .144444312
    66    4 A .144444212
    67    5 B .144444222
    68    4 A .144444221
    69    3 A .144444231
    70    2 A .144444331
    71    3 A .144443331
    72    4 A .144443231
    73    5 A .144443221
    74    6 B .1444432220
    75    5 B .1444432222
    76    4 A .1444432212
    77    3 A .1444432312
    78    2 A .1444433312
    79    3 A .1444423312
    80    4 A .1444422312
    81    5 A .1444422212
    82    6 B .1444422222
    83    5 A .1444422221
    84    4 A .1444422231
    85    3 A .1444422331
    86    2 A .1444423331
    87    1 A .1444433331
    88    2 A .1444333331
    89    3 A .1444323331
    90    4 A .1444322331
    91    5 A .1444322231
    92    6 A .1444322221
    93    7 B .14443222220
    94    6 B .14443222222
    95    5 A .14443222212
    96    4 A .14443222312
    97    3 A .14443223312
    98    2 A .14443233312
    99    1 A .14443333312
   100    2 A .14442333312
   101    3 A .14442233312
   102    4 A .14442223312
   103    5 A .14442222312
   104    6 A .14442222212
   105    7 B .14442222222
   106    6 A .14442222221
   107    5 A .14442222231
   108    4 A .14442222331
   109    3 A .14442223331
   110    2 A .14442233331
   111    1 A .14442333331
   112    0 A .14443333331
   113    1 A .14433333331
   114    2 A .14432333331
   115    3 A .14432233331
   116    4 A .14432223331
   117    5 A .14432222331
   118    6 A .14432222231
   119    7 A .14432222221
   120    8 B .144322222220
   121    7 B .144322222222
   122    6 A .144322222212
   123    5 A .144322222312
   124    4 A .144322223312
   125    3 A .144322233312
   126    2 A .144322333312
   127    1 A .144323333312
   128    0 A .144333333312
   129    1 A .144233333312
   130    2 A .144223333312
   131    3 A .144222333312
   132    4 A .144222233312
   133    5 A .144222223312
   134    6 A .144222222312
   135    7 A .144222222212
   136    8 B .144222222222
   137    7 A .144222222221
   138    6 A .144222222231
   139    5 A .144222222331
   140    4 A .144222223331
   141    3 A .144222233331
   142    2 A .144222333331
   143    1 A .144223333331
   144    0 A .144233333331
   145   -1 A .144333333331
   146    0 A .143333333331
   147    1 A .143233333331
   148    2 A .143223333331
   149    3 A .143222333331
   150    4 A .143222233331
   151    5 A .143222223331
   152    6 A .143222222331
   153    7 A .143222222231
   154    8 A .143222222221
   155    9 B .1432222222220
   156    8 B .1432222222222
   157    7 A .1432222222212
   158    6 A .1432222222312
   159    5 A .1432222223312
   160    4 A .1432222233312
   161    3 A .1432222333312
   162    2 A .1432223333312
   163    1 A .1432233333312
   164    0 A .1432333333312
   165   -1 A .1433333333312
   166    0 A .1423333333312
   167    1 A .1422333333312
   168    2 A .1422233333312
   169    3 A .1422223333312
   170    4 A .1422222333312
   171    5 A .1422222233312
   172    6 A .1422222223312
   173    7 A .1422222222312
   174    8 A .1422222222212
   175    9 B .1422222222222
   176    8 A .1422222222221
   177    7 A .1422222222231
   178    6 A .1422222222331
   179    5 A .1422222223331
   180    4 A .1422222233331
   181    3 A .1422222333331
   182    2 A .1422223333331
   183    1 A .1422233333331
   184    0 A .1422333333331
   185   -1 A .1423333333331
   186   -2 A .1433333333331
   187   -1 A .1333333333331
   188    0 A .1323333333331
   189    1 A .1322333333331
   190    2 A .1322233333331
   191    3 A .1322223333331
   192    4 A .1322222333331
   193    5 A .1322222233331
   194    6 A .1322222223331
   195    7 A .1322222222331
   196    8 A .1322222222231
   197    9 A .1322222222221
   198   10 B .13222222222220
   199    9 B .13222222222222
   200    8 A .13222222222212

After 200 steps (201 lines): state = A.
Produced     14 nonzeros.
Tape index 8, scanned [-3 .. 10].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 162 5 15 67 66 9 0 5 7 15 11
B 38 9 4 16 9   1 2 4 9  
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:11:54 CEST 2010