Comment: This TM produces 64'665 nonzeros in 4'561'535'055 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | B1R | B2R | A3L | A2R | A3R | 1 | right | B | 2 | right | B | 3 | left | A | 2 | right | A | 3 | right | A |
B | B2L | A2L | A1L | B4R | Z1R | 2 | left | B | 2 | left | A | 1 | left | A | 4 | right | B | 1 | right | Z |
Simulation is done just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as 1-bck-macro machine. The same TM as 1-bck-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . 0 1 1 B . . 10 2 0 B . . 12 3 -1 A . .022 4 0 B . .122 5 -1 A . .112 6 0 B . .212 7 -1 A . .222 8 -2 A . 0322 9 -1 B . 1322 10 0 B . 1422 11 -1 A . 1412 12 0 A . 1312 13 1 B . 1322 14 0 A . 1321 15 -1 A . 1331 16 0 A . 1231 17 1 A . 1221 18 2 B . 12220 19 1 B . 12222 20 0 A . 12212 21 -1 A . 12312 22 -2 A . 13312 23 -1 B . 23312 24 0 B . 24312 25 1 B . 24412 26 0 A . 24422 27 1 A . 24322 28 0 A . 24332 29 1 A . 24232 30 2 A . 24222 31 1 A . 24223 32 0 A . 24233 33 -1 A . 24333 34 0 A . 23333 35 1 A . 23233 36 2 A . 23223 37 3 A . 232220 38 4 B . 2322210 39 3 B . 2322212 40 2 A . 2322222 41 1 A . 2322322 42 0 A . 2323322 43 -1 A . 2333322 44 0 A . 2233322 45 1 A . 2223322 46 2 A . 2222322 47 3 A . 2222222 48 2 A . 2222232 49 1 A . 2222332 50 0 A . 2223332 51 -1 A . 2233332 52 -2 A . 2333332 53 -3 A .03333332 54 -2 B .13333332 55 -1 B .14333332 56 0 B .14433332 57 1 B .14443332 58 2 B .14444332 59 3 B .14444432 60 4 B .14444442 61 3 A .14444441 62 4 A .14444431 63 5 B .144444320 64 4 B .144444322 65 3 A .144444312 66 4 A .144444212 67 5 B .144444222 68 4 A .144444221 69 3 A .144444231 70 2 A .144444331 71 3 A .144443331 72 4 A .144443231 73 5 A .144443221 74 6 B .1444432220 75 5 B .1444432222 76 4 A .1444432212 77 3 A .1444432312 78 2 A .1444433312 79 3 A .1444423312 80 4 A .1444422312 81 5 A .1444422212 82 6 B .1444422222 83 5 A .1444422221 84 4 A .1444422231 85 3 A .1444422331 86 2 A .1444423331 87 1 A .1444433331 88 2 A .1444333331 89 3 A .1444323331 90 4 A .1444322331 91 5 A .1444322231 92 6 A .1444322221 93 7 B .14443222220 94 6 B .14443222222 95 5 A .14443222212 96 4 A .14443222312 97 3 A .14443223312 98 2 A .14443233312 99 1 A .14443333312 100 2 A .14442333312 101 3 A .14442233312 102 4 A .14442223312 103 5 A .14442222312 104 6 A .14442222212 105 7 B .14442222222 106 6 A .14442222221 107 5 A .14442222231 108 4 A .14442222331 109 3 A .14442223331 110 2 A .14442233331 111 1 A .14442333331 112 0 A .14443333331 113 1 A .14433333331 114 2 A .14432333331 115 3 A .14432233331 116 4 A .14432223331 117 5 A .14432222331 118 6 A .14432222231 119 7 A .14432222221 120 8 B .144322222220 121 7 B .144322222222 122 6 A .144322222212 123 5 A .144322222312 124 4 A .144322223312 125 3 A .144322233312 126 2 A .144322333312 127 1 A .144323333312 128 0 A .144333333312 129 1 A .144233333312 130 2 A .144223333312 131 3 A .144222333312 132 4 A .144222233312 133 5 A .144222223312 134 6 A .144222222312 135 7 A .144222222212 136 8 B .144222222222 137 7 A .144222222221 138 6 A .144222222231 139 5 A .144222222331 140 4 A .144222223331 141 3 A .144222233331 142 2 A .144222333331 143 1 A .144223333331 144 0 A .144233333331 145 -1 A .144333333331 146 0 A .143333333331 147 1 A .143233333331 148 2 A .143223333331 149 3 A .143222333331 150 4 A .143222233331 151 5 A .143222223331 152 6 A .143222222331 153 7 A .143222222231 154 8 A .143222222221 155 9 B .1432222222220 156 8 B .1432222222222 157 7 A .1432222222212 158 6 A .1432222222312 159 5 A .1432222223312 160 4 A .1432222233312 161 3 A .1432222333312 162 2 A .1432223333312 163 1 A .1432233333312 164 0 A .1432333333312 165 -1 A .1433333333312 166 0 A .1423333333312 167 1 A .1422333333312 168 2 A .1422233333312 169 3 A .1422223333312 170 4 A .1422222333312 171 5 A .1422222233312 172 6 A .1422222223312 173 7 A .1422222222312 174 8 A .1422222222212 175 9 B .1422222222222 176 8 A .1422222222221 177 7 A .1422222222231 178 6 A .1422222222331 179 5 A .1422222223331 180 4 A .1422222233331 181 3 A .1422222333331 182 2 A .1422223333331 183 1 A .1422233333331 184 0 A .1422333333331 185 -1 A .1423333333331 186 -2 A .1433333333331 187 -1 A .1333333333331 188 0 A .1323333333331 189 1 A .1322333333331 190 2 A .1322233333331 191 3 A .1322223333331 192 4 A .1322222333331 193 5 A .1322222233331 194 6 A .1322222223331 195 7 A .1322222222331 196 8 A .1322222222231 197 9 A .1322222222221 198 10 B .13222222222220 199 9 B .13222222222222 200 8 A .13222222222212 After 200 steps (201 lines): state = A. Produced 14 nonzeros. Tape index 8, scanned [-3 .. 10].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 162 | 5 | 15 | 67 | 66 | 9 | 0 | 5 | 7 | 15 | 11 |
B | 38 | 9 | 4 | 16 | 9 | 1 | 2 | 4 | 9 |