Comment: This TM produces 64'665 nonzeros in 4'561'535'055 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | B1R | B2R | A3L | A2R | A3R | 1 | right | B | 2 | right | B | 3 | left | A | 2 | right | A | 3 | right | A |
| B | B2L | A2L | A1L | B4R | Z1R | 2 | left | B | 2 | left | A | 1 | left | A | 4 | right | B | 1 | right | Z |
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.
Step Tpos St Tape contents
0 0 A . . 0
1 1 B . . 10
2 0 B . . 12
3 -1 A . .022
4 0 B . .122
5 -1 A . .112
6 0 B . .212
7 -1 A . .222
8 -2 A . 0322
9 -1 B . 1322
10 0 B . 1422
11 -1 A . 1412
12 0 A . 1312
13 1 B . 1322
14 0 A . 1321
15 -1 A . 1331
16 0 A . 1231
17 1 A . 1221
18 2 B . 12220
19 1 B . 12222
20 0 A . 12212
21 -1 A . 12312
22 -2 A . 13312
23 -1 B . 23312
24 0 B . 24312
25 1 B . 24412
26 0 A . 24422
27 1 A . 24322
28 0 A . 24332
29 1 A . 24232
30 2 A . 24222
31 1 A . 24223
32 0 A . 24233
33 -1 A . 24333
34 0 A . 23333
35 1 A . 23233
36 2 A . 23223
37 3 A . 232220
38 4 B . 2322210
39 3 B . 2322212
40 2 A . 2322222
41 1 A . 2322322
42 0 A . 2323322
43 -1 A . 2333322
44 0 A . 2233322
45 1 A . 2223322
46 2 A . 2222322
47 3 A . 2222222
48 2 A . 2222232
49 1 A . 2222332
50 0 A . 2223332
51 -1 A . 2233332
52 -2 A . 2333332
53 -3 A .03333332
54 -2 B .13333332
55 -1 B .14333332
56 0 B .14433332
57 1 B .14443332
58 2 B .14444332
59 3 B .14444432
60 4 B .14444442
61 3 A .14444441
62 4 A .14444431
63 5 B .144444320
64 4 B .144444322
65 3 A .144444312
66 4 A .144444212
67 5 B .144444222
68 4 A .144444221
69 3 A .144444231
70 2 A .144444331
71 3 A .144443331
72 4 A .144443231
73 5 A .144443221
74 6 B .1444432220
75 5 B .1444432222
76 4 A .1444432212
77 3 A .1444432312
78 2 A .1444433312
79 3 A .1444423312
80 4 A .1444422312
81 5 A .1444422212
82 6 B .1444422222
83 5 A .1444422221
84 4 A .1444422231
85 3 A .1444422331
86 2 A .1444423331
87 1 A .1444433331
88 2 A .1444333331
89 3 A .1444323331
90 4 A .1444322331
91 5 A .1444322231
92 6 A .1444322221
93 7 B .14443222220
94 6 B .14443222222
95 5 A .14443222212
96 4 A .14443222312
97 3 A .14443223312
98 2 A .14443233312
99 1 A .14443333312
100 2 A .14442333312
101 3 A .14442233312
102 4 A .14442223312
103 5 A .14442222312
104 6 A .14442222212
105 7 B .14442222222
106 6 A .14442222221
107 5 A .14442222231
108 4 A .14442222331
109 3 A .14442223331
110 2 A .14442233331
111 1 A .14442333331
112 0 A .14443333331
113 1 A .14433333331
114 2 A .14432333331
115 3 A .14432233331
116 4 A .14432223331
117 5 A .14432222331
118 6 A .14432222231
119 7 A .14432222221
120 8 B .144322222220
121 7 B .144322222222
122 6 A .144322222212
123 5 A .144322222312
124 4 A .144322223312
125 3 A .144322233312
126 2 A .144322333312
127 1 A .144323333312
128 0 A .144333333312
129 1 A .144233333312
130 2 A .144223333312
131 3 A .144222333312
132 4 A .144222233312
133 5 A .144222223312
134 6 A .144222222312
135 7 A .144222222212
136 8 B .144222222222
137 7 A .144222222221
138 6 A .144222222231
139 5 A .144222222331
140 4 A .144222223331
141 3 A .144222233331
142 2 A .144222333331
143 1 A .144223333331
144 0 A .144233333331
145 -1 A .144333333331
146 0 A .143333333331
147 1 A .143233333331
148 2 A .143223333331
149 3 A .143222333331
150 4 A .143222233331
151 5 A .143222223331
152 6 A .143222222331
153 7 A .143222222231
154 8 A .143222222221
155 9 B .1432222222220
156 8 B .1432222222222
157 7 A .1432222222212
158 6 A .1432222222312
159 5 A .1432222223312
160 4 A .1432222233312
161 3 A .1432222333312
162 2 A .1432223333312
163 1 A .1432233333312
164 0 A .1432333333312
165 -1 A .1433333333312
166 0 A .1423333333312
167 1 A .1422333333312
168 2 A .1422233333312
169 3 A .1422223333312
170 4 A .1422222333312
171 5 A .1422222233312
172 6 A .1422222223312
173 7 A .1422222222312
174 8 A .1422222222212
175 9 B .1422222222222
176 8 A .1422222222221
177 7 A .1422222222231
178 6 A .1422222222331
179 5 A .1422222223331
180 4 A .1422222233331
181 3 A .1422222333331
182 2 A .1422223333331
183 1 A .1422233333331
184 0 A .1422333333331
185 -1 A .1423333333331
186 -2 A .1433333333331
187 -1 A .1333333333331
188 0 A .1323333333331
189 1 A .1322333333331
190 2 A .1322233333331
191 3 A .1322223333331
192 4 A .1322222333331
193 5 A .1322222233331
194 6 A .1322222223331
195 7 A .1322222222331
196 8 A .1322222222231
197 9 A .1322222222221
198 10 B .13222222222220
199 9 B .13222222222222
200 8 A .13222222222212
After 200 steps (201 lines): state = A.
Produced 14 nonzeros.
Tape index 8, scanned [-3 .. 10].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 162 | 5 | 15 | 67 | 66 | 9 | 0 | 5 | 7 | 15 | 11 |
| B | 38 | 9 | 4 | 16 | 9 | 1 | 2 | 4 | 9 | ||