2-state 5-symbol TM #b (G. Lafitte & C. Papazian)

Comment: This TM produces 64'665 nonzeros in 4'561'535'055 steps.

State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A B1R B2R A3L A2R A3R 1 right B 2 right B 3 left A 2 right A 3 right A
B B2L A2L A1L B4R Z1R 2 left B 2 left A 1 left A 4 right B 1 right Z
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing macro factor 1.
Pushing BCK machine.

Steps BasSteps BasTpos  Tape contents
    0        0       0  (0)A>
    1        1       1  (1)B>
    2        3      -1  <A(2) 2
    3        8      -2  <A(3) 22
    4       10       0  1 (4)B> 22
    5       13       1  1 3 (2)B> 2
    6       15      -1  1 3 <A(3) 1
    7       17       1  1 2 (2)A> 1
    8       18       2  1 22 (2)B>
    9       20       0  1 22 <A(1) 2
   10       21      -1  1 2 <A(3) 1 2
   11       22      -2  1 <A(3) 3 1 2
   12       24       0  2 (4)B> 3 1 2
   13       25       1  2 4 (4)B> 1 2
   14       30       2  2 4 2 (2)A> 2
   15       32       0  2 4 2 <A(3) 3
   16       33      -1  2 4 <A(3) 32
   17       35       1  2 3 (2)A> 32
   18       37       3  2 3 22 (2)A>
   19       38       4  2 3 23 (1)B>
   20       40       2  2 3 23 <A(2) 2
   21       41       1  2 3 22 <A(3) 22
   22       43      -1  2 3 <A(3) 32 22
   23       45       1  22 (2)A> 32 22
   24       47       3  24 (2)A> 22
   25       49       1  24 <A(3) 3 2
   26       53      -3  <A(3) 35 2
   27       55      -1  1 (4)B> 35 2
   28       60       4  1 45 (4)B> 2
   29       63       5  1 45 3 (2)B>
   30       65       3  1 45 3 <A(1) 2
   31       67       5  1 45 2 (2)B> 2
   32       69       3  1 45 2 <A(3) 1
   33       70       2  1 45 <A(3) 3 1
   34       72       4  1 44 3 (2)A> 3 1
   35       73       5  1 44 3 2 (2)A> 1
   36       74       6  1 44 3 22 (2)B>
   37       76       4  1 44 3 22 <A(1) 2
   38       77       3  1 44 3 2 <A(3) 1 2
   39       78       2  1 44 3 <A(3) 3 1 2
   40       80       4  1 44 2 (2)A> 3 1 2
   41       81       5  1 44 22 (2)A> 1 2
   42       82       6  1 44 23 (2)B> 2
   43       84       4  1 44 23 <A(3) 1
   44       87       1  1 44 <A(3) 33 1
   45       89       3  1 43 3 (2)A> 33 1
   46       92       6  1 43 3 23 (2)A> 1
   47       93       7  1 43 3 24 (2)B>
   48       95       5  1 43 3 24 <A(1) 2
   49       96       4  1 43 3 23 <A(3) 1 2
   50       99       1  1 43 3 <A(3) 33 1 2
   51      101       3  1 43 2 (2)A> 33 1 2
   52      104       6  1 43 24 (2)A> 1 2
   53      105       7  1 43 25 (2)B> 2
   54      107       5  1 43 25 <A(3) 1
   55      112       0  1 43 <A(3) 35 1
   56      114       2  1 42 3 (2)A> 35 1
   57      119       7  1 42 3 25 (2)A> 1
   58      120       8  1 42 3 26 (2)B>
   59      122       6  1 42 3 26 <A(1) 2
   60      123       5  1 42 3 25 <A(3) 1 2
   61      128       0  1 42 3 <A(3) 35 1 2
   62      130       2  1 42 2 (2)A> 35 1 2
   63      135       7  1 42 26 (2)A> 1 2
   64      136       8  1 42 27 (2)B> 2
   65      138       6  1 42 27 <A(3) 1
   66      145      -1  1 42 <A(3) 37 1
   67      147       1  1 4 3 (2)A> 37 1
   68      154       8  1 4 3 27 (2)A> 1
   69      155       9  1 4 3 28 (2)B>
   70      157       7  1 4 3 28 <A(1) 2
   71      158       6  1 4 3 27 <A(3) 1 2
   72      165      -1  1 4 3 <A(3) 37 1 2
   73      167       1  1 4 2 (2)A> 37 1 2
   74      174       8  1 4 28 (2)A> 1 2
   75      175       9  1 4 29 (2)B> 2
   76      177       7  1 4 29 <A(3) 1
   77      186      -2  1 4 <A(3) 39 1
   78      188       0  1 3 (2)A> 39 1
   79      197       9  1 3 29 (2)A> 1
   80      198      10  1 3 210 (2)B>
   81      200       8  1 3 210 <A(1) 2
   82      201       7  1 3 29 <A(3) 1 2
   83      210      -2  1 3 <A(3) 39 1 2
   84      212       0  1 2 (2)A> 39 1 2
   85      221       9  1 210 (2)A> 1 2
   86      222      10  1 211 (2)B> 2
   87      224       8  1 211 <A(3) 1
   88      235      -3  1 <A(3) 311 1
   89      237      -1  2 (4)B> 311 1
   90      248      10  2 411 (4)B> 1
   91      253      11  2 411 2 (2)A>
   92      254      12  2 411 22 (1)B>
   93      256      10  2 411 22 <A(2) 2
   94      257       9  2 411 2 <A(3) 22
   95      258       8  2 411 <A(3) 3 22
   96      260      10  2 410 3 (2)A> 3 22
   97      261      11  2 410 3 2 (2)A> 22
   98      263       9  2 410 3 2 <A(3) 3 2
   99      264       8  2 410 3 <A(3) 32 2
  100      266      10  2 410 2 (2)A> 32 2
  101      268      12  2 410 23 (2)A> 2
  102      270      10  2 410 23 <A(3) 3
  103      273       7  2 410 <A(3) 34
  104      275       9  2 49 3 (2)A> 34
  105      279      13  2 49 3 24 (2)A>
  106      280      14  2 49 3 25 (1)B>
  107      282      12  2 49 3 25 <A(2) 2
  108      283      11  2 49 3 24 <A(3) 22
  109      287       7  2 49 3 <A(3) 34 22
  110      289       9  2 49 2 (2)A> 34 22
  111      293      13  2 49 25 (2)A> 22
  112      295      11  2 49 25 <A(3) 3 2
  113      300       6  2 49 <A(3) 36 2
  114      302       8  2 48 3 (2)A> 36 2
  115      308      14  2 48 3 26 (2)A> 2
  116      310      12  2 48 3 26 <A(3) 3
  117      316       6  2 48 3 <A(3) 37
  118      318       8  2 48 2 (2)A> 37
  119      325      15  2 48 28 (2)A>
  120      326      16  2 48 29 (1)B>
  121      328      14  2 48 29 <A(2) 2
  122      329      13  2 48 28 <A(3) 22
  123      337       5  2 48 <A(3) 38 22
  124      339       7  2 47 3 (2)A> 38 22
  125      347      15  2 47 3 28 (2)A> 22
  126      349      13  2 47 3 28 <A(3) 3 2
  127      357       5  2 47 3 <A(3) 39 2
  128      359       7  2 47 2 (2)A> 39 2
  129      368      16  2 47 210 (2)A> 2
  130      370      14  2 47 210 <A(3) 3
  131      380       4  2 47 <A(3) 311
  132      382       6  2 46 3 (2)A> 311
  133      393      17  2 46 3 211 (2)A>
  134      394      18  2 46 3 212 (1)B>
  135      396      16  2 46 3 212 <A(2) 2
  136      397      15  2 46 3 211 <A(3) 22
  137      408       4  2 46 3 <A(3) 311 22
  138      410       6  2 46 2 (2)A> 311 22
  139      421      17  2 46 212 (2)A> 22
  140      423      15  2 46 212 <A(3) 3 2
  141      435       3  2 46 <A(3) 313 2
  142      437       5  2 45 3 (2)A> 313 2
  143      450      18  2 45 3 213 (2)A> 2
  144      452      16  2 45 3 213 <A(3) 3
  145      465       3  2 45 3 <A(3) 314
  146      467       5  2 45 2 (2)A> 314
  147      481      19  2 45 215 (2)A>
  148      482      20  2 45 216 (1)B>
  149      484      18  2 45 216 <A(2) 2
  150      485      17  2 45 215 <A(3) 22
  151      500       2  2 45 <A(3) 315 22
  152      502       4  2 44 3 (2)A> 315 22
  153      517      19  2 44 3 215 (2)A> 22
  154      519      17  2 44 3 215 <A(3) 3 2
  155      534       2  2 44 3 <A(3) 316 2
  156      536       4  2 44 2 (2)A> 316 2
  157      552      20  2 44 217 (2)A> 2
  158      554      18  2 44 217 <A(3) 3
  159      571       1  2 44 <A(3) 318
  160      573       3  2 43 3 (2)A> 318
  161      591      21  2 43 3 218 (2)A>
  162      592      22  2 43 3 219 (1)B>
  163      594      20  2 43 3 219 <A(2) 2
  164      595      19  2 43 3 218 <A(3) 22
  165      613       1  2 43 3 <A(3) 318 22
  166      615       3  2 43 2 (2)A> 318 22
  167      633      21  2 43 219 (2)A> 22
  168      635      19  2 43 219 <A(3) 3 2
  169      654       0  2 43 <A(3) 320 2
  170      656       2  2 42 3 (2)A> 320 2
  171      676      22  2 42 3 220 (2)A> 2
  172      678      20  2 42 3 220 <A(3) 3
  173      698       0  2 42 3 <A(3) 321
  174      700       2  2 42 2 (2)A> 321
  175      721      23  2 42 222 (2)A>
  176      722      24  2 42 223 (1)B>
  177      724      22  2 42 223 <A(2) 2
  178      725      21  2 42 222 <A(3) 22
  179      747      -1  2 42 <A(3) 322 22
  180      749       1  2 4 3 (2)A> 322 22
  181      771      23  2 4 3 222 (2)A> 22
  182      773      21  2 4 3 222 <A(3) 3 2
  183      795      -1  2 4 3 <A(3) 323 2
  184      797       1  2 4 2 (2)A> 323 2
  185      820      24  2 4 224 (2)A> 2
  186      822      22  2 4 224 <A(3) 3
  187      846      -2  2 4 <A(3) 325
  188      848       0  2 3 (2)A> 325
  189      873      25  2 3 225 (2)A>
  190      874      26  2 3 226 (1)B>
  191      876      24  2 3 226 <A(2) 2
  192      877      23  2 3 225 <A(3) 22
  193      902      -2  2 3 <A(3) 325 22
  194      904       0  22 (2)A> 325 22
  195      929      25  227 (2)A> 22
  196      931      23  227 <A(3) 3 2
  197      958      -4  <A(3) 328 2
  198      960      -2  1 (4)B> 328 2
  199      988      26  1 428 (4)B> 2
  200      991      27  1 428 3 (2)B>

Lines:       201
Top steps:   200
Macro steps: 200
Basic steps: 991
Tape index:  27
nonzeros:    31
log10(nonzeros):    1.491
log10(steps   ):    2.996

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    nbs 5
    T 2-state 5-symbol TM #b (G. Lafitte & C. Papazian)
    5T  B1R B2R A3L A2R A3R  B2L A2L A1L B4R Z1R
    : 64'665 4'561'535'055
    L 4
    M	201
    pref	sim
    machv Laf25_b  	just simple
    machv Laf25_b-r	with repetitions reduced
    machv Laf25_b-1	with tape symbol exponents
    machv Laf25_b-m	as 1-bck-macro machine
    machv Laf25_b-a	as 1-bck-macro machine with pure additive config-TRs
    iam	Laf25_b-m
    mtype	1 0
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:11:54 CEST 2010
    edate	Tue Jul  6 22:11:54 CEST 2010
    bnspeed	1

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:11:54 CEST 2010
Ready: Tue Jul 6 22:11:54 CEST 2010