Comment: This TM produces 64'665 nonzeros in 4'561'535'055 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | B1R | B2R | A3L | A2R | A3R | 1 | right | B | 2 | right | B | 3 | left | A | 2 | right | A | 3 | right | A |
B | B2L | A2L | A1L | B4R | Z1R | 2 | left | B | 2 | left | A | 1 | left | A | 4 | right | B | 1 | right | Z |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-bck-macro machine. The same TM as 1-bck-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <B 2 3 -1 <A 2 2 4 0 1 B> 2 2 5 -1 1 <A 1 2 6 0 2 B> 1 2 7 -1 2 <A 2 2 8 -2 <A 3 2 2 9 -1 1 B> 3 2 2 10 0 1 4 B> 2 2 11 -1 1 4 <A 1 2 12 0 1 3 A> 1 2 13 1 1 3 2 B> 2 14 0 1 3 2 <A 1 15 -1 1 3 <A 3 1 16 0 1 2 A> 3 1 17 1 1 2 2 A> 1 18 2 1 23 B> 19 1 1 23 <B 2 20 0 1 2 2 <A 1 2 + 22 -2 1 <A 3 3 1 2 23 -1 2 B> 3 3 1 2 + 25 1 2 4 4 B> 1 2 26 0 2 4 4 <A 2 2 27 1 2 4 3 A> 2 2 28 0 2 4 3 <A 3 2 29 1 2 4 2 A> 3 2 30 2 2 4 2 2 A> 2 31 1 2 4 2 2 <A 3 + 33 -1 2 4 <A 33 34 0 2 3 A> 33 + 37 3 2 3 23 A> 38 4 2 3 23 1 B> 39 3 2 3 23 1 <B 2 40 2 2 3 23 <A 2 2 + 43 -1 2 3 <A 33 2 2 44 0 2 2 A> 33 2 2 + 47 3 25 A> 2 2 48 2 25 <A 3 2 + 53 -3 <A 36 2 54 -2 1 B> 36 2 + 60 4 1 46 B> 2 61 3 1 46 <A 1 62 4 1 45 3 A> 1 63 5 1 45 3 2 B> 64 4 1 45 3 2 <B 2 65 3 1 45 3 <A 1 2 66 4 1 45 2 A> 1 2 67 5 1 45 2 2 B> 2 68 4 1 45 2 2 <A 1 + 70 2 1 45 <A 3 3 1 71 3 1 44 3 A> 3 3 1 + 73 5 1 44 3 2 2 A> 1 74 6 1 44 3 23 B> 75 5 1 44 3 23 <B 2 76 4 1 44 3 2 2 <A 1 2 + 78 2 1 44 3 <A 3 3 1 2 79 3 1 44 2 A> 3 3 1 2 + 81 5 1 44 23 A> 1 2 82 6 1 44 24 B> 2 83 5 1 44 24 <A 1 + 87 1 1 44 <A 34 1 88 2 1 43 3 A> 34 1 + 92 6 1 43 3 24 A> 1 93 7 1 43 3 25 B> 94 6 1 43 3 25 <B 2 95 5 1 43 3 24 <A 1 2 + 99 1 1 43 3 <A 34 1 2 100 2 1 43 2 A> 34 1 2 + 104 6 1 43 25 A> 1 2 105 7 1 43 26 B> 2 106 6 1 43 26 <A 1 + 112 0 1 43 <A 36 1 113 1 1 4 4 3 A> 36 1 + 119 7 1 4 4 3 26 A> 1 120 8 1 4 4 3 27 B> 121 7 1 4 4 3 27 <B 2 122 6 1 4 4 3 26 <A 1 2 + 128 0 1 4 4 3 <A 36 1 2 129 1 1 4 4 2 A> 36 1 2 + 135 7 1 4 4 27 A> 1 2 136 8 1 4 4 28 B> 2 137 7 1 4 4 28 <A 1 + 145 -1 1 4 4 <A 38 1 146 0 1 4 3 A> 38 1 + 154 8 1 4 3 28 A> 1 155 9 1 4 3 29 B> 156 8 1 4 3 29 <B 2 157 7 1 4 3 28 <A 1 2 + 165 -1 1 4 3 <A 38 1 2 166 0 1 4 2 A> 38 1 2 + 174 8 1 4 29 A> 1 2 175 9 1 4 210 B> 2 176 8 1 4 210 <A 1 + 186 -2 1 4 <A 310 1 187 -1 1 3 A> 310 1 + 197 9 1 3 210 A> 1 198 10 1 3 211 B> 199 9 1 3 211 <B 2 200 8 1 3 210 <A 1 2 + 210 -2 1 3 <A 310 1 2 211 -1 1 2 A> 310 1 2 + 221 9 1 211 A> 1 2 222 10 1 212 B> 2 223 9 1 212 <A 1 + 235 -3 1 <A 312 1 236 -2 2 B> 312 1 + 248 10 2 412 B> 1 249 9 2 412 <A 2 250 10 2 411 3 A> 2 251 9 2 411 3 <A 3 252 10 2 411 2 A> 3 253 11 2 411 2 2 A> 254 12 2 411 2 2 1 B> 255 11 2 411 2 2 1 <B 2 256 10 2 411 2 2 <A 2 2 + 258 8 2 411 <A 3 3 2 2 259 9 2 410 3 A> 3 3 2 2 + 261 11 2 410 3 2 2 A> 2 2 262 10 2 410 3 2 2 <A 3 2 + 264 8 2 410 3 <A 33 2 265 9 2 410 2 A> 33 2 + 268 12 2 410 24 A> 2 269 11 2 410 24 <A 3 + 273 7 2 410 <A 35 274 8 2 49 3 A> 35 + 279 13 2 49 3 25 A> 280 14 2 49 3 25 1 B> 281 13 2 49 3 25 1 <B 2 282 12 2 49 3 25 <A 2 2 + 287 7 2 49 3 <A 35 2 2 288 8 2 49 2 A> 35 2 2 + 293 13 2 49 26 A> 2 2 294 12 2 49 26 <A 3 2 + 300 6 2 49 <A 37 2 301 7 2 48 3 A> 37 2 + 308 14 2 48 3 27 A> 2 309 13 2 48 3 27 <A 3 + 316 6 2 48 3 <A 38 317 7 2 48 2 A> 38 + 325 15 2 48 29 A> 326 16 2 48 29 1 B> 327 15 2 48 29 1 <B 2 328 14 2 48 29 <A 2 2 + 337 5 2 48 <A 39 2 2 338 6 2 47 3 A> 39 2 2 + 347 15 2 47 3 29 A> 2 2 348 14 2 47 3 29 <A 3 2 + 357 5 2 47 3 <A 310 2 358 6 2 47 2 A> 310 2 + 368 16 2 47 211 A> 2 369 15 2 47 211 <A 3 + 380 4 2 47 <A 312 381 5 2 46 3 A> 312 + 393 17 2 46 3 212 A> 394 18 2 46 3 212 1 B> 395 17 2 46 3 212 1 <B 2 396 16 2 46 3 212 <A 2 2 + 408 4 2 46 3 <A 312 2 2 409 5 2 46 2 A> 312 2 2 + 421 17 2 46 213 A> 2 2 422 16 2 46 213 <A 3 2 + 435 3 2 46 <A 314 2 436 4 2 45 3 A> 314 2 + 450 18 2 45 3 214 A> 2 451 17 2 45 3 214 <A 3 + 465 3 2 45 3 <A 315 466 4 2 45 2 A> 315 + 481 19 2 45 216 A> 482 20 2 45 216 1 B> 483 19 2 45 216 1 <B 2 484 18 2 45 216 <A 2 2 + 500 2 2 45 <A 316 2 2 501 3 2 44 3 A> 316 2 2 + 517 19 2 44 3 216 A> 2 2 518 18 2 44 3 216 <A 3 2 + 534 2 2 44 3 <A 317 2 535 3 2 44 2 A> 317 2 + 552 20 2 44 218 A> 2 553 19 2 44 218 <A 3 + 571 1 2 44 <A 319 572 2 2 43 3 A> 319 + 591 21 2 43 3 219 A> 592 22 2 43 3 219 1 B> 593 21 2 43 3 219 1 <B 2 594 20 2 43 3 219 <A 2 2 + 613 1 2 43 3 <A 319 2 2 614 2 2 43 2 A> 319 2 2 + 633 21 2 43 220 A> 2 2 634 20 2 43 220 <A 3 2 + 654 0 2 43 <A 321 2 655 1 2 4 4 3 A> 321 2 + 676 22 2 4 4 3 221 A> 2 677 21 2 4 4 3 221 <A 3 + 698 0 2 4 4 3 <A 322 699 1 2 4 4 2 A> 322 + 721 23 2 4 4 223 A> 722 24 2 4 4 223 1 B> 723 23 2 4 4 223 1 <B 2 724 22 2 4 4 223 <A 2 2 After 724 steps (201 lines): state = A. Produced 28 nonzeros. Tape index 22, scanned [-3 .. 24].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 658 | 12 | 17 | 306 | 304 | 19 | 0 | 5 | 7 | 15 | 11 |
B | 66 | 16 | 12 | 17 | 21 | 1 | 2 | 4 | 9 |