2-state 5-symbol TM #b (G. Lafitte & C. Papazian)

Comment: This TM produces 64'665 nonzeros in 4'561'535'055 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A B1R B2R A3L A2R A3R 1 right B 2 right B 3 left A 2 right A 3 right A
B B2L A2L A1L B4R Z1R 2 left B 2 left A 1 left A 4 right B 1 right Z
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     0  1 <B 2
     3    -1  <A 2 2
     4     0  1 B> 2 2
     5    -1  1 <A 1 2
     6     0  2 B> 1 2
     7    -1  2 <A 2 2
     8    -2  <A 3 2 2
     9    -1  1 B> 3 2 2
    10     0  1 4 B> 2 2
    11    -1  1 4 <A 1 2
    12     0  1 3 A> 1 2
    13     1  1 3 2 B> 2
    14     0  1 3 2 <A 1
    15    -1  1 3 <A 3 1
    16     0  1 2 A> 3 1
    17     1  1 2 2 A> 1
    18     2  1 23 B>
    19     1  1 23 <B 2
    20     0  1 2 2 <A 1 2
+   22    -2  1 <A 3 3 1 2
    23    -1  2 B> 3 3 1 2
+   25     1  2 4 4 B> 1 2
    26     0  2 4 4 <A 2 2
    27     1  2 4 3 A> 2 2
    28     0  2 4 3 <A 3 2
    29     1  2 4 2 A> 3 2
    30     2  2 4 2 2 A> 2
    31     1  2 4 2 2 <A 3
+   33    -1  2 4 <A 33
    34     0  2 3 A> 33
+   37     3  2 3 23 A>
    38     4  2 3 23 1 B>
    39     3  2 3 23 1 <B 2
    40     2  2 3 23 <A 2 2
+   43    -1  2 3 <A 33 2 2
    44     0  2 2 A> 33 2 2
+   47     3  25 A> 2 2
    48     2  25 <A 3 2
+   53    -3  <A 36 2
    54    -2  1 B> 36 2
+   60     4  1 46 B> 2
    61     3  1 46 <A 1
    62     4  1 45 3 A> 1
    63     5  1 45 3 2 B>
    64     4  1 45 3 2 <B 2
    65     3  1 45 3 <A 1 2
    66     4  1 45 2 A> 1 2
    67     5  1 45 2 2 B> 2
    68     4  1 45 2 2 <A 1
+   70     2  1 45 <A 3 3 1
    71     3  1 44 3 A> 3 3 1
+   73     5  1 44 3 2 2 A> 1
    74     6  1 44 3 23 B>
    75     5  1 44 3 23 <B 2
    76     4  1 44 3 2 2 <A 1 2
+   78     2  1 44 3 <A 3 3 1 2
    79     3  1 44 2 A> 3 3 1 2
+   81     5  1 44 23 A> 1 2
    82     6  1 44 24 B> 2
    83     5  1 44 24 <A 1
+   87     1  1 44 <A 34 1
    88     2  1 43 3 A> 34 1
+   92     6  1 43 3 24 A> 1
    93     7  1 43 3 25 B>
    94     6  1 43 3 25 <B 2
    95     5  1 43 3 24 <A 1 2
+   99     1  1 43 3 <A 34 1 2
   100     2  1 43 2 A> 34 1 2
+  104     6  1 43 25 A> 1 2
   105     7  1 43 26 B> 2
   106     6  1 43 26 <A 1
+  112     0  1 43 <A 36 1
   113     1  1 4 4 3 A> 36 1
+  119     7  1 4 4 3 26 A> 1
   120     8  1 4 4 3 27 B>
   121     7  1 4 4 3 27 <B 2
   122     6  1 4 4 3 26 <A 1 2
+  128     0  1 4 4 3 <A 36 1 2
   129     1  1 4 4 2 A> 36 1 2
+  135     7  1 4 4 27 A> 1 2
   136     8  1 4 4 28 B> 2
   137     7  1 4 4 28 <A 1
+  145    -1  1 4 4 <A 38 1
   146     0  1 4 3 A> 38 1
+  154     8  1 4 3 28 A> 1
   155     9  1 4 3 29 B>
   156     8  1 4 3 29 <B 2
   157     7  1 4 3 28 <A 1 2
+  165    -1  1 4 3 <A 38 1 2
   166     0  1 4 2 A> 38 1 2
+  174     8  1 4 29 A> 1 2
   175     9  1 4 210 B> 2
   176     8  1 4 210 <A 1
+  186    -2  1 4 <A 310 1
   187    -1  1 3 A> 310 1
+  197     9  1 3 210 A> 1
   198    10  1 3 211 B>
   199     9  1 3 211 <B 2
   200     8  1 3 210 <A 1 2
+  210    -2  1 3 <A 310 1 2
   211    -1  1 2 A> 310 1 2
+  221     9  1 211 A> 1 2
   222    10  1 212 B> 2
   223     9  1 212 <A 1
+  235    -3  1 <A 312 1
   236    -2  2 B> 312 1
+  248    10  2 412 B> 1
   249     9  2 412 <A 2
   250    10  2 411 3 A> 2
   251     9  2 411 3 <A 3
   252    10  2 411 2 A> 3
   253    11  2 411 2 2 A>
   254    12  2 411 2 2 1 B>
   255    11  2 411 2 2 1 <B 2
   256    10  2 411 2 2 <A 2 2
+  258     8  2 411 <A 3 3 2 2
   259     9  2 410 3 A> 3 3 2 2
+  261    11  2 410 3 2 2 A> 2 2
   262    10  2 410 3 2 2 <A 3 2
+  264     8  2 410 3 <A 33 2
   265     9  2 410 2 A> 33 2
+  268    12  2 410 24 A> 2
   269    11  2 410 24 <A 3
+  273     7  2 410 <A 35
   274     8  2 49 3 A> 35
+  279    13  2 49 3 25 A>
   280    14  2 49 3 25 1 B>
   281    13  2 49 3 25 1 <B 2
   282    12  2 49 3 25 <A 2 2
+  287     7  2 49 3 <A 35 2 2
   288     8  2 49 2 A> 35 2 2
+  293    13  2 49 26 A> 2 2
   294    12  2 49 26 <A 3 2
+  300     6  2 49 <A 37 2
   301     7  2 48 3 A> 37 2
+  308    14  2 48 3 27 A> 2
   309    13  2 48 3 27 <A 3
+  316     6  2 48 3 <A 38
   317     7  2 48 2 A> 38
+  325    15  2 48 29 A>
   326    16  2 48 29 1 B>
   327    15  2 48 29 1 <B 2
   328    14  2 48 29 <A 2 2
+  337     5  2 48 <A 39 2 2
   338     6  2 47 3 A> 39 2 2
+  347    15  2 47 3 29 A> 2 2
   348    14  2 47 3 29 <A 3 2
+  357     5  2 47 3 <A 310 2
   358     6  2 47 2 A> 310 2
+  368    16  2 47 211 A> 2
   369    15  2 47 211 <A 3
+  380     4  2 47 <A 312
   381     5  2 46 3 A> 312
+  393    17  2 46 3 212 A>
   394    18  2 46 3 212 1 B>
   395    17  2 46 3 212 1 <B 2
   396    16  2 46 3 212 <A 2 2
+  408     4  2 46 3 <A 312 2 2
   409     5  2 46 2 A> 312 2 2
+  421    17  2 46 213 A> 2 2
   422    16  2 46 213 <A 3 2
+  435     3  2 46 <A 314 2
   436     4  2 45 3 A> 314 2
+  450    18  2 45 3 214 A> 2
   451    17  2 45 3 214 <A 3
+  465     3  2 45 3 <A 315
   466     4  2 45 2 A> 315
+  481    19  2 45 216 A>
   482    20  2 45 216 1 B>
   483    19  2 45 216 1 <B 2
   484    18  2 45 216 <A 2 2
+  500     2  2 45 <A 316 2 2
   501     3  2 44 3 A> 316 2 2
+  517    19  2 44 3 216 A> 2 2
   518    18  2 44 3 216 <A 3 2
+  534     2  2 44 3 <A 317 2
   535     3  2 44 2 A> 317 2
+  552    20  2 44 218 A> 2
   553    19  2 44 218 <A 3
+  571     1  2 44 <A 319
   572     2  2 43 3 A> 319
+  591    21  2 43 3 219 A>
   592    22  2 43 3 219 1 B>
   593    21  2 43 3 219 1 <B 2
   594    20  2 43 3 219 <A 2 2
+  613     1  2 43 3 <A 319 2 2
   614     2  2 43 2 A> 319 2 2
+  633    21  2 43 220 A> 2 2
   634    20  2 43 220 <A 3 2
+  654     0  2 43 <A 321 2
   655     1  2 4 4 3 A> 321 2
+  676    22  2 4 4 3 221 A> 2
   677    21  2 4 4 3 221 <A 3
+  698     0  2 4 4 3 <A 322
   699     1  2 4 4 2 A> 322
+  721    23  2 4 4 223 A>
   722    24  2 4 4 223 1 B>
   723    23  2 4 4 223 1 <B 2
   724    22  2 4 4 223 <A 2 2

After 724 steps (201 lines): state = A.
Produced     28 nonzeros.
Tape index 22, scanned [-3 .. 24].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 658 12 17 306 304 19 0 5 7 15 11
B 66 16 12 17 21   1 2 4 9  
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:11:54 CEST 2010