Comment: This TM produces 64'665 nonzeros in 4'561'535'055 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | B1R | B2R | A3L | A2R | A3R | 1 | right | B | 2 | right | B | 3 | left | A | 2 | right | A | 3 | right | A |
| B | B2L | A2L | A1L | B4R | Z1R | 2 | left | B | 2 | left | A | 1 | left | A | 4 | right | B | 1 | right | Z |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <B 2
3 -1 <A 2 2
4 0 1 B> 2 2
5 -1 1 <A 1 2
6 0 2 B> 1 2
7 -1 2 <A 2 2
8 -2 <A 3 2 2
9 -1 1 B> 3 2 2
10 0 1 4 B> 2 2
11 -1 1 4 <A 1 2
12 0 1 3 A> 1 2
13 1 1 3 2 B> 2
14 0 1 3 2 <A 1
15 -1 1 3 <A 3 1
16 0 1 2 A> 3 1
17 1 1 2 2 A> 1
18 2 1 23 B>
19 1 1 23 <B 2
20 0 1 2 2 <A 1 2
+ 22 -2 1 <A 3 3 1 2
23 -1 2 B> 3 3 1 2
+ 25 1 2 4 4 B> 1 2
26 0 2 4 4 <A 2 2
27 1 2 4 3 A> 2 2
28 0 2 4 3 <A 3 2
29 1 2 4 2 A> 3 2
30 2 2 4 2 2 A> 2
31 1 2 4 2 2 <A 3
+ 33 -1 2 4 <A 33
34 0 2 3 A> 33
+ 37 3 2 3 23 A>
38 4 2 3 23 1 B>
39 3 2 3 23 1 <B 2
40 2 2 3 23 <A 2 2
+ 43 -1 2 3 <A 33 2 2
44 0 2 2 A> 33 2 2
+ 47 3 25 A> 2 2
48 2 25 <A 3 2
+ 53 -3 <A 36 2
54 -2 1 B> 36 2
+ 60 4 1 46 B> 2
61 3 1 46 <A 1
62 4 1 45 3 A> 1
63 5 1 45 3 2 B>
64 4 1 45 3 2 <B 2
65 3 1 45 3 <A 1 2
66 4 1 45 2 A> 1 2
67 5 1 45 2 2 B> 2
68 4 1 45 2 2 <A 1
+ 70 2 1 45 <A 3 3 1
71 3 1 44 3 A> 3 3 1
+ 73 5 1 44 3 2 2 A> 1
74 6 1 44 3 23 B>
75 5 1 44 3 23 <B 2
76 4 1 44 3 2 2 <A 1 2
+ 78 2 1 44 3 <A 3 3 1 2
79 3 1 44 2 A> 3 3 1 2
+ 81 5 1 44 23 A> 1 2
82 6 1 44 24 B> 2
83 5 1 44 24 <A 1
+ 87 1 1 44 <A 34 1
88 2 1 43 3 A> 34 1
+ 92 6 1 43 3 24 A> 1
93 7 1 43 3 25 B>
94 6 1 43 3 25 <B 2
95 5 1 43 3 24 <A 1 2
+ 99 1 1 43 3 <A 34 1 2
100 2 1 43 2 A> 34 1 2
+ 104 6 1 43 25 A> 1 2
105 7 1 43 26 B> 2
106 6 1 43 26 <A 1
+ 112 0 1 43 <A 36 1
113 1 1 4 4 3 A> 36 1
+ 119 7 1 4 4 3 26 A> 1
120 8 1 4 4 3 27 B>
121 7 1 4 4 3 27 <B 2
122 6 1 4 4 3 26 <A 1 2
+ 128 0 1 4 4 3 <A 36 1 2
129 1 1 4 4 2 A> 36 1 2
+ 135 7 1 4 4 27 A> 1 2
136 8 1 4 4 28 B> 2
137 7 1 4 4 28 <A 1
+ 145 -1 1 4 4 <A 38 1
146 0 1 4 3 A> 38 1
+ 154 8 1 4 3 28 A> 1
155 9 1 4 3 29 B>
156 8 1 4 3 29 <B 2
157 7 1 4 3 28 <A 1 2
+ 165 -1 1 4 3 <A 38 1 2
166 0 1 4 2 A> 38 1 2
+ 174 8 1 4 29 A> 1 2
175 9 1 4 210 B> 2
176 8 1 4 210 <A 1
+ 186 -2 1 4 <A 310 1
187 -1 1 3 A> 310 1
+ 197 9 1 3 210 A> 1
198 10 1 3 211 B>
199 9 1 3 211 <B 2
200 8 1 3 210 <A 1 2
+ 210 -2 1 3 <A 310 1 2
211 -1 1 2 A> 310 1 2
+ 221 9 1 211 A> 1 2
222 10 1 212 B> 2
223 9 1 212 <A 1
+ 235 -3 1 <A 312 1
236 -2 2 B> 312 1
+ 248 10 2 412 B> 1
249 9 2 412 <A 2
250 10 2 411 3 A> 2
251 9 2 411 3 <A 3
252 10 2 411 2 A> 3
253 11 2 411 2 2 A>
254 12 2 411 2 2 1 B>
255 11 2 411 2 2 1 <B 2
256 10 2 411 2 2 <A 2 2
+ 258 8 2 411 <A 3 3 2 2
259 9 2 410 3 A> 3 3 2 2
+ 261 11 2 410 3 2 2 A> 2 2
262 10 2 410 3 2 2 <A 3 2
+ 264 8 2 410 3 <A 33 2
265 9 2 410 2 A> 33 2
+ 268 12 2 410 24 A> 2
269 11 2 410 24 <A 3
+ 273 7 2 410 <A 35
274 8 2 49 3 A> 35
+ 279 13 2 49 3 25 A>
280 14 2 49 3 25 1 B>
281 13 2 49 3 25 1 <B 2
282 12 2 49 3 25 <A 2 2
+ 287 7 2 49 3 <A 35 2 2
288 8 2 49 2 A> 35 2 2
+ 293 13 2 49 26 A> 2 2
294 12 2 49 26 <A 3 2
+ 300 6 2 49 <A 37 2
301 7 2 48 3 A> 37 2
+ 308 14 2 48 3 27 A> 2
309 13 2 48 3 27 <A 3
+ 316 6 2 48 3 <A 38
317 7 2 48 2 A> 38
+ 325 15 2 48 29 A>
326 16 2 48 29 1 B>
327 15 2 48 29 1 <B 2
328 14 2 48 29 <A 2 2
+ 337 5 2 48 <A 39 2 2
338 6 2 47 3 A> 39 2 2
+ 347 15 2 47 3 29 A> 2 2
348 14 2 47 3 29 <A 3 2
+ 357 5 2 47 3 <A 310 2
358 6 2 47 2 A> 310 2
+ 368 16 2 47 211 A> 2
369 15 2 47 211 <A 3
+ 380 4 2 47 <A 312
381 5 2 46 3 A> 312
+ 393 17 2 46 3 212 A>
394 18 2 46 3 212 1 B>
395 17 2 46 3 212 1 <B 2
396 16 2 46 3 212 <A 2 2
+ 408 4 2 46 3 <A 312 2 2
409 5 2 46 2 A> 312 2 2
+ 421 17 2 46 213 A> 2 2
422 16 2 46 213 <A 3 2
+ 435 3 2 46 <A 314 2
436 4 2 45 3 A> 314 2
+ 450 18 2 45 3 214 A> 2
451 17 2 45 3 214 <A 3
+ 465 3 2 45 3 <A 315
466 4 2 45 2 A> 315
+ 481 19 2 45 216 A>
482 20 2 45 216 1 B>
483 19 2 45 216 1 <B 2
484 18 2 45 216 <A 2 2
+ 500 2 2 45 <A 316 2 2
501 3 2 44 3 A> 316 2 2
+ 517 19 2 44 3 216 A> 2 2
518 18 2 44 3 216 <A 3 2
+ 534 2 2 44 3 <A 317 2
535 3 2 44 2 A> 317 2
+ 552 20 2 44 218 A> 2
553 19 2 44 218 <A 3
+ 571 1 2 44 <A 319
572 2 2 43 3 A> 319
+ 591 21 2 43 3 219 A>
592 22 2 43 3 219 1 B>
593 21 2 43 3 219 1 <B 2
594 20 2 43 3 219 <A 2 2
+ 613 1 2 43 3 <A 319 2 2
614 2 2 43 2 A> 319 2 2
+ 633 21 2 43 220 A> 2 2
634 20 2 43 220 <A 3 2
+ 654 0 2 43 <A 321 2
655 1 2 4 4 3 A> 321 2
+ 676 22 2 4 4 3 221 A> 2
677 21 2 4 4 3 221 <A 3
+ 698 0 2 4 4 3 <A 322
699 1 2 4 4 2 A> 322
+ 721 23 2 4 4 223 A>
722 24 2 4 4 223 1 B>
723 23 2 4 4 223 1 <B 2
724 22 2 4 4 223 <A 2 2
After 724 steps (201 lines): state = A.
Produced 28 nonzeros.
Tape index 22, scanned [-3 .. 24].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 658 | 12 | 17 | 306 | 304 | 19 | 0 | 5 | 7 | 15 | 11 |
| B | 66 | 16 | 12 | 17 | 21 | 1 | 2 | 4 | 9 | ||