3-state 3-symbol "surprise in a box" of Allen Brady

Comment: The halting transition has been modified to print a 1
Comment: A.B.: 2 1 1 , 2-1 2 , 3-1 1;
Comment: A.B.: 1-1 1 , 2 1 2 , 2 1 1;
Comment: A.B.: 0 0 0 , 1-1 2 , 3-1 0;
Comment: Brady's number: # 1732367
Comment: This TM produces 31 nonzeros in 2315619 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on 0 on 1 on 2
Print Move Goto Print Move Goto Print Move Goto
A B1R B2L C1L 1 right B 2 left B 1 left C
B A1L B2R B1R 1 left A 2 right B 1 right B
C Z1R A2L C0L 1 right Z 2 left A 0 left C
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 6-bck-bck-bck-3-macro machine.
The same TM as 6-bck-bck-bck-3-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . . . . . 0
     1    1 B . . . . . . 10
     2    0 A . . . . . . 11
     3   -1 B . . . . . .021
     4   -2 A . . . . . 0121
     5   -1 B . . . . . 1121
     6    0 B . . . . . 1221
     7    1 B . . . . . 1211
     8    2 B . . . . . 12120
     9    1 A . . . . . 12121
    10    0 C . . . . . 12111
    11   -1 A . . . . . 12211
    12   -2 C . . . . . 11211
    13   -3 A . . . . .021211
    14   -2 B . . . . .121211
    15   -1 B . . . . .111211
    16    0 B . . . . .112211
    17    1 B . . . . .112111
    18    2 B . . . . .112121
    19    3 B . . . . .1121220
    20    2 A . . . . .1121221
    21    1 C . . . . .1121211
    22    0 C . . . . .1121011
    23   -1 A . . . . .1122011
    24   -2 C . . . . .1112011
    25   -3 A . . . . .1212011
    26   -4 B . . . . 02212011
    27   -5 A . . . .012212011
    28   -4 B . . . .112212011
    29   -3 B . . . .122212011
    30   -2 B . . . .121212011
    31   -1 B . . . .121112011
    32    0 B . . . .121122011
    33    1 B . . . .121121011
    34    0 A . . . .121121111
    35   -1 B . . . .121122111
    36    0 B . . . .121112111
    37    1 B . . . .121111111
    38    2 B . . . .121111211
    39    3 B . . . .121111221
    40    4 B . . . .1211112220
    41    3 A . . . .1211112221
    42    2 C . . . .1211112211
    43    1 C . . . .1211112011
    44    0 C . . . .1211110011
    45   -1 A . . . .1211120011
    46   -2 B . . . .1211220011
    47   -1 B . . . .1212220011
    48    0 B . . . .1212120011
    49    1 B . . . .1212110011
    50    0 A . . . .1212111011
    51   -1 B . . . .1212121011
    52    0 B . . . .1212221011
    53    1 B . . . .1212211011
    54    2 B . . . .1212212011
    55    1 A . . . .1212212111
    56    0 C . . . .1212211111
    57   -1 A . . . .1212221111
    58   -2 C . . . .1212121111
    59   -3 C . . . .1210121111
    60   -4 A . . . .1220121111
    61   -5 C . . . .1120121111
    62   -6 A . . . 02120121111
    63   -5 B . . . 12120121111
    64   -4 B . . . 11120121111
    65   -3 B . . . 11220121111
    66   -2 B . . . 11210121111
    67   -3 A . . . 11211121111
    68   -4 B . . . 11221121111
    69   -3 B . . . 11121121111
    70   -2 B . . . 11111121111
    71   -1 B . . . 11112121111
    72    0 B . . . 11112221111
    73    1 B . . . 11112211111
    74    2 B . . . 11112212111
    75    3 B . . . 11112212211
    76    4 B . . . 11112212221
    77    5 B . . . 111122122220
    78    4 A . . . 111122122221
    79    3 C . . . 111122122211
    80    2 C . . . 111122122011
    81    1 C . . . 111122120011
    82    0 C . . . 111122100011
    83   -1 A . . . 111122200011
    84   -2 C . . . 111121200011
    85   -3 C . . . 111101200011
    86   -4 A . . . 111201200011
    87   -5 B . . . 112201200011
    88   -4 B . . . 122201200011
    89   -3 B . . . 121201200011
    90   -2 B . . . 121101200011
    91   -3 A . . . 121111200011
    92   -4 B . . . 121211200011
    93   -3 B . . . 122211200011
    94   -2 B . . . 122111200011
    95   -1 B . . . 122121200011
    96    0 B . . . 122122200011
    97    1 B . . . 122122100011
    98    0 A . . . 122122110011
    99   -1 B . . . 122122210011
   100    0 B . . . 122121210011
   101    1 B . . . 122121110011
   102    2 B . . . 122121120011
   103    1 A . . . 122121121011
   104    0 C . . . 122121111011
   105   -1 A . . . 122121211011
   106   -2 B . . . 122122211011
   107   -1 B . . . 122112211011
   108    0 B . . . 122111211011
   109    1 B . . . 122111111011
   110    2 B . . . 122111121011
   111    3 B . . . 122111122011
   112    2 A . . . 122111122111
   113    1 C . . . 122111121111
   114    0 C . . . 122111101111
   115   -1 A . . . 122111201111
   116   -2 B . . . 122112201111
   117   -1 B . . . 122122201111
   118    0 B . . . 122121201111
   119    1 B . . . 122121101111
   120    0 A . . . 122121111111
   121   -1 B . . . 122121211111
   122    0 B . . . 122122211111
   123    1 B . . . 122122111111
   124    2 B . . . 122122121111
   125    3 B . . . 122122122111
   126    4 B . . . 122122122211
   127    5 B . . . 122122122221
   128    6 B . . . 1221221222220
   129    5 A . . . 1221221222221
   130    4 C . . . 1221221222211
   131    3 C . . . 1221221222011
   132    2 C . . . 1221221220011
   133    1 C . . . 1221221200011
   134    0 C . . . 1221221000011
   135   -1 A . . . 1221222000011
   136   -2 C . . . 1221212000011
   137   -3 C . . . 1221012000011
   138   -4 A . . . 1222012000011
   139   -5 C . . . 1212012000011
   140   -6 C . . . 1012012000011
   141   -7 A . . .02012012000011
   142   -6 B . . .12012012000011
   143   -5 B . . .11012012000011
   144   -6 A . . .11112012000011
   145   -7 B . . .12112012000011
   146   -6 B . . .22112012000011
   147   -5 B . . .21112012000011
   148   -4 B . . .21212012000011
   149   -3 B . . .21222012000011
   150   -2 B . . .21221012000011
   151   -3 A . . .21221112000011
   152   -4 B . . .21222112000011
   153   -3 B . . .21212112000011
   154   -2 B . . .21211112000011
   155   -1 B . . .21211212000011
   156    0 B . . .21211222000011
   157    1 B . . .21211221000011
   158    0 A . . .21211221100011
   159   -1 B . . .21211222100011
   160    0 B . . .21211212100011
   161    1 B . . .21211211100011
   162    2 B . . .21211211200011
   163    1 A . . .21211211210011
   164    0 C . . .21211211110011
   165   -1 A . . .21211212110011
   166   -2 B . . .21211222110011
   167   -1 B . . .21211122110011
   168    0 B . . .21211112110011
   169    1 B . . .21211111110011
   170    2 B . . .21211111210011
   171    3 B . . .21211111220011
   172    2 A . . .21211111221011
   173    1 C . . .21211111211011
   174    0 C . . .21211111011011
   175   -1 A . . .21211112011011
   176   -2 B . . .21211122011011
   177   -1 B . . .21211222011011
   178    0 B . . .21211212011011
   179    1 B . . .21211211011011
   180    0 A . . .21211211111011
   181   -1 B . . .21211212111011
   182    0 B . . .21211222111011
   183    1 B . . .21211221111011
   184    2 B . . .21211221211011
   185    3 B . . .21211221221011
   186    4 B . . .21211221222011
   187    3 A . . .21211221222111
   188    2 C . . .21211221221111
   189    1 C . . .21211221201111
   190    0 C . . .21211221001111
   191   -1 A . . .21211222001111
   192   -2 C . . .21211212001111
   193   -3 C . . .21211012001111
   194   -4 A . . .21212012001111
   195   -5 B . . .21222012001111
   196   -4 B . . .21122012001111
   197   -3 B . . .21112012001111
   198   -2 B . . .21111012001111
   199   -3 A . . .21111112001111
   200   -4 B . . .21112112001111

After 200 steps (201 lines): state = B.
Produced     12 nonzeros.
Tape index -4, scanned [-7 .. 6].
State Count Execution count First in step
on 0 on 1 on 2 on 0 on 1 on 2
A 45 6 20 19 0 2 9
B 117 25 47 45 1 5 6
C 38   19 19   10 21
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 6-bck-bck-bck-3-macro machine.
The same TM as 6-bck-bck-bck-3-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:11:29 CEST 2010