Comment: The halting transition has been modified to print a 1 Comment: A.B.: 2 1 1 , 2-1 2 , 3-1 1; Comment: A.B.: 1-1 1 , 2 1 2 , 2 1 1; Comment: A.B.: 0 0 0 , 1-1 2 , 3-1 0; Comment: Brady's number: # 1732367 Comment: This TM produces 31 nonzeros in 2315619 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | |||||||
A | B1R | B2L | C1L | 1 | right | B | 2 | left | B | 1 | left | C |
B | A1L | B2R | B1R | 1 | left | A | 2 | right | B | 1 | right | B |
C | Z1R | A2L | C0L | 1 | right | Z | 2 | left | A | 0 | left | C |
Simulation is done just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as 6-bck-bck-bck-3-macro machine. The same TM as 6-bck-bck-bck-3-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . . . . . 0 1 1 B . . . . . . 10 2 0 A . . . . . . 11 3 -1 B . . . . . .021 4 -2 A . . . . . 0121 5 -1 B . . . . . 1121 6 0 B . . . . . 1221 7 1 B . . . . . 1211 8 2 B . . . . . 12120 9 1 A . . . . . 12121 10 0 C . . . . . 12111 11 -1 A . . . . . 12211 12 -2 C . . . . . 11211 13 -3 A . . . . .021211 14 -2 B . . . . .121211 15 -1 B . . . . .111211 16 0 B . . . . .112211 17 1 B . . . . .112111 18 2 B . . . . .112121 19 3 B . . . . .1121220 20 2 A . . . . .1121221 21 1 C . . . . .1121211 22 0 C . . . . .1121011 23 -1 A . . . . .1122011 24 -2 C . . . . .1112011 25 -3 A . . . . .1212011 26 -4 B . . . . 02212011 27 -5 A . . . .012212011 28 -4 B . . . .112212011 29 -3 B . . . .122212011 30 -2 B . . . .121212011 31 -1 B . . . .121112011 32 0 B . . . .121122011 33 1 B . . . .121121011 34 0 A . . . .121121111 35 -1 B . . . .121122111 36 0 B . . . .121112111 37 1 B . . . .121111111 38 2 B . . . .121111211 39 3 B . . . .121111221 40 4 B . . . .1211112220 41 3 A . . . .1211112221 42 2 C . . . .1211112211 43 1 C . . . .1211112011 44 0 C . . . .1211110011 45 -1 A . . . .1211120011 46 -2 B . . . .1211220011 47 -1 B . . . .1212220011 48 0 B . . . .1212120011 49 1 B . . . .1212110011 50 0 A . . . .1212111011 51 -1 B . . . .1212121011 52 0 B . . . .1212221011 53 1 B . . . .1212211011 54 2 B . . . .1212212011 55 1 A . . . .1212212111 56 0 C . . . .1212211111 57 -1 A . . . .1212221111 58 -2 C . . . .1212121111 59 -3 C . . . .1210121111 60 -4 A . . . .1220121111 61 -5 C . . . .1120121111 62 -6 A . . . 02120121111 63 -5 B . . . 12120121111 64 -4 B . . . 11120121111 65 -3 B . . . 11220121111 66 -2 B . . . 11210121111 67 -3 A . . . 11211121111 68 -4 B . . . 11221121111 69 -3 B . . . 11121121111 70 -2 B . . . 11111121111 71 -1 B . . . 11112121111 72 0 B . . . 11112221111 73 1 B . . . 11112211111 74 2 B . . . 11112212111 75 3 B . . . 11112212211 76 4 B . . . 11112212221 77 5 B . . . 111122122220 78 4 A . . . 111122122221 79 3 C . . . 111122122211 80 2 C . . . 111122122011 81 1 C . . . 111122120011 82 0 C . . . 111122100011 83 -1 A . . . 111122200011 84 -2 C . . . 111121200011 85 -3 C . . . 111101200011 86 -4 A . . . 111201200011 87 -5 B . . . 112201200011 88 -4 B . . . 122201200011 89 -3 B . . . 121201200011 90 -2 B . . . 121101200011 91 -3 A . . . 121111200011 92 -4 B . . . 121211200011 93 -3 B . . . 122211200011 94 -2 B . . . 122111200011 95 -1 B . . . 122121200011 96 0 B . . . 122122200011 97 1 B . . . 122122100011 98 0 A . . . 122122110011 99 -1 B . . . 122122210011 100 0 B . . . 122121210011 101 1 B . . . 122121110011 102 2 B . . . 122121120011 103 1 A . . . 122121121011 104 0 C . . . 122121111011 105 -1 A . . . 122121211011 106 -2 B . . . 122122211011 107 -1 B . . . 122112211011 108 0 B . . . 122111211011 109 1 B . . . 122111111011 110 2 B . . . 122111121011 111 3 B . . . 122111122011 112 2 A . . . 122111122111 113 1 C . . . 122111121111 114 0 C . . . 122111101111 115 -1 A . . . 122111201111 116 -2 B . . . 122112201111 117 -1 B . . . 122122201111 118 0 B . . . 122121201111 119 1 B . . . 122121101111 120 0 A . . . 122121111111 121 -1 B . . . 122121211111 122 0 B . . . 122122211111 123 1 B . . . 122122111111 124 2 B . . . 122122121111 125 3 B . . . 122122122111 126 4 B . . . 122122122211 127 5 B . . . 122122122221 128 6 B . . . 1221221222220 129 5 A . . . 1221221222221 130 4 C . . . 1221221222211 131 3 C . . . 1221221222011 132 2 C . . . 1221221220011 133 1 C . . . 1221221200011 134 0 C . . . 1221221000011 135 -1 A . . . 1221222000011 136 -2 C . . . 1221212000011 137 -3 C . . . 1221012000011 138 -4 A . . . 1222012000011 139 -5 C . . . 1212012000011 140 -6 C . . . 1012012000011 141 -7 A . . .02012012000011 142 -6 B . . .12012012000011 143 -5 B . . .11012012000011 144 -6 A . . .11112012000011 145 -7 B . . .12112012000011 146 -6 B . . .22112012000011 147 -5 B . . .21112012000011 148 -4 B . . .21212012000011 149 -3 B . . .21222012000011 150 -2 B . . .21221012000011 151 -3 A . . .21221112000011 152 -4 B . . .21222112000011 153 -3 B . . .21212112000011 154 -2 B . . .21211112000011 155 -1 B . . .21211212000011 156 0 B . . .21211222000011 157 1 B . . .21211221000011 158 0 A . . .21211221100011 159 -1 B . . .21211222100011 160 0 B . . .21211212100011 161 1 B . . .21211211100011 162 2 B . . .21211211200011 163 1 A . . .21211211210011 164 0 C . . .21211211110011 165 -1 A . . .21211212110011 166 -2 B . . .21211222110011 167 -1 B . . .21211122110011 168 0 B . . .21211112110011 169 1 B . . .21211111110011 170 2 B . . .21211111210011 171 3 B . . .21211111220011 172 2 A . . .21211111221011 173 1 C . . .21211111211011 174 0 C . . .21211111011011 175 -1 A . . .21211112011011 176 -2 B . . .21211122011011 177 -1 B . . .21211222011011 178 0 B . . .21211212011011 179 1 B . . .21211211011011 180 0 A . . .21211211111011 181 -1 B . . .21211212111011 182 0 B . . .21211222111011 183 1 B . . .21211221111011 184 2 B . . .21211221211011 185 3 B . . .21211221221011 186 4 B . . .21211221222011 187 3 A . . .21211221222111 188 2 C . . .21211221221111 189 1 C . . .21211221201111 190 0 C . . .21211221001111 191 -1 A . . .21211222001111 192 -2 C . . .21211212001111 193 -3 C . . .21211012001111 194 -4 A . . .21212012001111 195 -5 B . . .21222012001111 196 -4 B . . .21122012001111 197 -3 B . . .21112012001111 198 -2 B . . .21111012001111 199 -3 A . . .21111112001111 200 -4 B . . .21112112001111 After 200 steps (201 lines): state = B. Produced 12 nonzeros. Tape index -4, scanned [-7 .. 6].
State | Count | Execution count | First in step | ||||
---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
A | 45 | 6 | 20 | 19 | 0 | 2 | 9 |
B | 117 | 25 | 47 | 45 | 1 | 5 | 6 |
C | 38 | 19 | 19 | 10 | 21 |