Comment: The halting transition has been modified to print a 1 Comment: A.B.: 2 1 1 , 2-1 2 , 3-1 1; Comment: A.B.: 1-1 1 , 2 1 2 , 2 1 1; Comment: A.B.: 0 0 0 , 1-1 2 , 3-1 0; Comment: Brady's number: # 1732367 Comment: This TM produces 31 nonzeros in 2315619 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | |||||||
A | B1R | B2L | C1L | 1 | right | B | 2 | left | B | 1 | left | C |
B | A1L | B2R | B1R | 1 | left | A | 2 | right | B | 1 | right | B |
C | Z1R | A2L | C0L | 1 | right | Z | 2 | left | A | 0 | left | C |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 6-bck-bck-bck-3-macro machine. The same TM as 6-bck-bck-bck-3-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 1 3 -1 <B 2 1 4 -2 <A 1 2 1 5 -1 1 B> 1 2 1 6 0 1 2 B> 2 1 7 1 1 2 1 B> 1 8 2 1 2 1 2 B> 9 1 1 2 1 2 <A 1 10 0 1 2 1 <C 1 1 11 -1 1 2 <A 2 1 1 12 -2 1 <C 1 2 1 1 13 -3 <A 2 1 2 1 1 14 -2 1 B> 2 1 2 1 1 15 -1 1 1 B> 1 2 1 1 16 0 1 1 2 B> 2 1 1 17 1 1 1 2 1 B> 1 1 + 19 3 1 1 2 1 2 2 B> 20 2 1 1 2 1 2 2 <A 1 21 1 1 1 2 1 2 <C 1 1 22 0 1 1 2 1 <C 0 1 1 23 -1 1 1 2 <A 2 0 1 1 24 -2 1 1 <C 1 2 0 1 1 25 -3 1 <A 2 1 2 0 1 1 26 -4 <B 2 2 1 2 0 1 1 27 -5 <A 1 2 2 1 2 0 1 1 28 -4 1 B> 1 2 2 1 2 0 1 1 29 -3 1 2 B> 2 2 1 2 0 1 1 + 31 -1 1 2 1 1 B> 1 2 0 1 1 32 0 1 2 1 1 2 B> 2 0 1 1 33 1 1 2 1 1 2 1 B> 0 1 1 34 0 1 2 1 1 2 1 <A 13 35 -1 1 2 1 1 2 <B 2 13 36 0 1 2 13 B> 2 13 37 1 1 2 14 B> 13 + 40 4 1 2 14 23 B> 41 3 1 2 14 23 <A 1 42 2 1 2 14 2 2 <C 1 1 + 44 0 1 2 14 <C 0 0 1 1 45 -1 1 2 13 <A 2 0 0 1 1 46 -2 1 2 1 1 <B 2 2 0 0 1 1 47 -1 1 2 1 2 B> 2 2 0 0 1 1 + 49 1 1 2 1 2 1 1 B> 0 0 1 1 50 0 1 2 1 2 1 1 <A 1 0 1 1 51 -1 1 2 1 2 1 <B 2 1 0 1 1 52 0 1 2 1 2 2 B> 2 1 0 1 1 53 1 1 2 1 2 2 1 B> 1 0 1 1 54 2 1 2 1 2 2 1 2 B> 0 1 1 55 1 1 2 1 2 2 1 2 <A 13 56 0 1 2 1 2 2 1 <C 14 57 -1 1 2 1 2 2 <A 2 14 58 -2 1 2 1 2 <C 1 2 14 59 -3 1 2 1 <C 0 1 2 14 60 -4 1 2 <A 2 0 1 2 14 61 -5 1 <C 1 2 0 1 2 14 62 -6 <A 2 1 2 0 1 2 14 63 -5 1 B> 2 1 2 0 1 2 14 64 -4 1 1 B> 1 2 0 1 2 14 65 -3 1 1 2 B> 2 0 1 2 14 66 -2 1 1 2 1 B> 0 1 2 14 67 -3 1 1 2 1 <A 1 1 2 14 68 -4 1 1 2 <B 2 1 1 2 14 69 -3 13 B> 2 1 1 2 14 70 -2 14 B> 1 1 2 14 + 72 0 14 2 2 B> 2 14 73 1 14 2 2 1 B> 14 + 77 5 14 2 2 1 24 B> 78 4 14 2 2 1 24 <A 1 79 3 14 2 2 1 23 <C 1 1 + 82 0 14 2 2 1 <C 03 1 1 83 -1 14 2 2 <A 2 03 1 1 84 -2 14 2 <C 1 2 03 1 1 85 -3 14 <C 0 1 2 03 1 1 86 -4 13 <A 2 0 1 2 03 1 1 87 -5 1 1 <B 2 2 0 1 2 03 1 1 88 -4 1 2 B> 2 2 0 1 2 03 1 1 + 90 -2 1 2 1 1 B> 0 1 2 03 1 1 91 -3 1 2 1 1 <A 1 1 2 03 1 1 92 -4 1 2 1 <B 2 1 1 2 03 1 1 93 -3 1 2 2 B> 2 1 1 2 03 1 1 94 -2 1 2 2 1 B> 1 1 2 03 1 1 + 96 0 1 2 2 1 2 2 B> 2 03 1 1 97 1 1 2 2 1 2 2 1 B> 03 1 1 98 0 1 2 2 1 2 2 1 <A 1 0 0 1 1 99 -1 1 2 2 1 2 2 <B 2 1 0 0 1 1 100 0 1 2 2 1 2 1 B> 2 1 0 0 1 1 101 1 1 2 2 1 2 1 1 B> 1 0 0 1 1 102 2 1 2 2 1 2 1 1 2 B> 0 0 1 1 103 1 1 2 2 1 2 1 1 2 <A 1 0 1 1 104 0 1 2 2 1 2 1 1 <C 1 1 0 1 1 105 -1 1 2 2 1 2 1 <A 2 1 1 0 1 1 106 -2 1 2 2 1 2 <B 2 2 1 1 0 1 1 107 -1 1 2 2 1 1 B> 2 2 1 1 0 1 1 + 109 1 1 2 2 14 B> 1 1 0 1 1 + 111 3 1 2 2 14 2 2 B> 0 1 1 112 2 1 2 2 14 2 2 <A 13 113 1 1 2 2 14 2 <C 14 114 0 1 2 2 14 <C 0 14 115 -1 1 2 2 13 <A 2 0 14 116 -2 1 2 2 1 1 <B 2 2 0 14 117 -1 1 2 2 1 2 B> 2 2 0 14 + 119 1 1 2 2 1 2 1 1 B> 0 14 120 0 1 2 2 1 2 1 1 <A 15 121 -1 1 2 2 1 2 1 <B 2 15 122 0 1 2 2 1 2 2 B> 2 15 123 1 1 2 2 1 2 2 1 B> 15 + 128 6 1 2 2 1 2 2 1 25 B> 129 5 1 2 2 1 2 2 1 25 <A 1 130 4 1 2 2 1 2 2 1 24 <C 1 1 + 134 0 1 2 2 1 2 2 1 <C 04 1 1 135 -1 1 2 2 1 2 2 <A 2 04 1 1 136 -2 1 2 2 1 2 <C 1 2 04 1 1 137 -3 1 2 2 1 <C 0 1 2 04 1 1 138 -4 1 2 2 <A 2 0 1 2 04 1 1 139 -5 1 2 <C 1 2 0 1 2 04 1 1 140 -6 1 <C 0 1 2 0 1 2 04 1 1 141 -7 <A 2 0 1 2 0 1 2 04 1 1 142 -6 1 B> 2 0 1 2 0 1 2 04 1 1 143 -5 1 1 B> 0 1 2 0 1 2 04 1 1 144 -6 1 1 <A 1 1 2 0 1 2 04 1 1 145 -7 1 <B 2 1 1 2 0 1 2 04 1 1 146 -6 2 B> 2 1 1 2 0 1 2 04 1 1 147 -5 2 1 B> 1 1 2 0 1 2 04 1 1 + 149 -3 2 1 2 2 B> 2 0 1 2 04 1 1 150 -2 2 1 2 2 1 B> 0 1 2 04 1 1 151 -3 2 1 2 2 1 <A 1 1 2 04 1 1 152 -4 2 1 2 2 <B 2 1 1 2 04 1 1 153 -3 2 1 2 1 B> 2 1 1 2 04 1 1 154 -2 2 1 2 1 1 B> 1 1 2 04 1 1 + 156 0 2 1 2 1 1 2 2 B> 2 04 1 1 157 1 2 1 2 1 1 2 2 1 B> 04 1 1 158 0 2 1 2 1 1 2 2 1 <A 1 03 1 1 159 -1 2 1 2 1 1 2 2 <B 2 1 03 1 1 160 0 2 1 2 1 1 2 1 B> 2 1 03 1 1 161 1 2 1 2 1 1 2 1 1 B> 1 03 1 1 162 2 2 1 2 1 1 2 1 1 2 B> 03 1 1 163 1 2 1 2 1 1 2 1 1 2 <A 1 0 0 1 1 164 0 2 1 2 1 1 2 1 1 <C 1 1 0 0 1 1 165 -1 2 1 2 1 1 2 1 <A 2 1 1 0 0 1 1 166 -2 2 1 2 1 1 2 <B 2 2 1 1 0 0 1 1 167 -1 2 1 2 13 B> 2 2 1 1 0 0 1 1 + 169 1 2 1 2 15 B> 1 1 0 0 1 1 + 171 3 2 1 2 15 2 2 B> 0 0 1 1 172 2 2 1 2 15 2 2 <A 1 0 1 1 173 1 2 1 2 15 2 <C 1 1 0 1 1 174 0 2 1 2 15 <C 0 1 1 0 1 1 175 -1 2 1 2 14 <A 2 0 1 1 0 1 1 176 -2 2 1 2 13 <B 2 2 0 1 1 0 1 1 177 -1 2 1 2 1 1 2 B> 2 2 0 1 1 0 1 1 + 179 1 2 1 2 1 1 2 1 1 B> 0 1 1 0 1 1 180 0 2 1 2 1 1 2 1 1 <A 13 0 1 1 181 -1 2 1 2 1 1 2 1 <B 2 13 0 1 1 182 0 2 1 2 1 1 2 2 B> 2 13 0 1 1 183 1 2 1 2 1 1 2 2 1 B> 13 0 1 1 + 186 4 2 1 2 1 1 2 2 1 23 B> 0 1 1 187 3 2 1 2 1 1 2 2 1 23 <A 13 188 2 2 1 2 1 1 2 2 1 2 2 <C 14 + 190 0 2 1 2 1 1 2 2 1 <C 0 0 14 191 -1 2 1 2 1 1 2 2 <A 2 0 0 14 192 -2 2 1 2 1 1 2 <C 1 2 0 0 14 193 -3 2 1 2 1 1 <C 0 1 2 0 0 14 194 -4 2 1 2 1 <A 2 0 1 2 0 0 14 195 -5 2 1 2 <B 2 2 0 1 2 0 0 14 196 -4 2 1 1 B> 2 2 0 1 2 0 0 14 + 198 -2 2 14 B> 0 1 2 0 0 14 199 -3 2 14 <A 1 1 2 0 0 14 200 -4 2 13 <B 2 1 1 2 0 0 14 201 -3 2 1 1 2 B> 2 1 1 2 0 0 14 202 -2 2 1 1 2 1 B> 1 1 2 0 0 14 + 204 0 2 1 1 2 1 2 2 B> 2 0 0 14 205 1 2 1 1 2 1 2 2 1 B> 0 0 14 206 0 2 1 1 2 1 2 2 1 <A 1 0 14 207 -1 2 1 1 2 1 2 2 <B 2 1 0 14 208 0 2 1 1 2 1 2 1 B> 2 1 0 14 209 1 2 1 1 2 1 2 1 1 B> 1 0 14 210 2 2 1 1 2 1 2 1 1 2 B> 0 14 211 1 2 1 1 2 1 2 1 1 2 <A 15 212 0 2 1 1 2 1 2 1 1 <C 16 213 -1 2 1 1 2 1 2 1 <A 2 16 214 -2 2 1 1 2 1 2 <B 2 2 16 215 -1 2 1 1 2 1 1 B> 2 2 16 + 217 1 2 1 1 2 14 B> 16 + 223 7 2 1 1 2 14 26 B> 224 6 2 1 1 2 14 26 <A 1 225 5 2 1 1 2 14 25 <C 1 1 + 230 0 2 1 1 2 14 <C 05 1 1 231 -1 2 1 1 2 13 <A 2 05 1 1 232 -2 2 1 1 2 1 1 <B 2 2 05 1 1 233 -1 2 1 1 2 1 2 B> 2 2 05 1 1 + 235 1 2 1 1 2 1 2 1 1 B> 05 1 1 236 0 2 1 1 2 1 2 1 1 <A 1 04 1 1 237 -1 2 1 1 2 1 2 1 <B 2 1 04 1 1 238 0 2 1 1 2 1 2 2 B> 2 1 04 1 1 239 1 2 1 1 2 1 2 2 1 B> 1 04 1 1 240 2 2 1 1 2 1 2 2 1 2 B> 04 1 1 241 1 2 1 1 2 1 2 2 1 2 <A 1 03 1 1 242 0 2 1 1 2 1 2 2 1 <C 1 1 03 1 1 243 -1 2 1 1 2 1 2 2 <A 2 1 1 03 1 1 244 -2 2 1 1 2 1 2 <C 1 2 1 1 03 1 1 245 -3 2 1 1 2 1 <C 0 1 2 1 1 03 1 1 After 245 steps (201 lines): state = C. Produced 11 nonzeros. Tape index -3, scanned [-7 .. 7].
State | Count | Execution count | First in step | ||||
---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
A | 53 | 6 | 24 | 23 | 0 | 2 | 9 |
B | 145 | 30 | 60 | 55 | 1 | 5 | 6 |
C | 47 | 22 | 25 | 10 | 21 |