Comment: This TM produces 13 ones in 107 steps. Comment: Taken (cited) from P.Michel Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 0 | on 1 | ||||
---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | |||||
A | 1RB | 1LB | 1 | right | B | 1 | left | B |
B | 1LA | 0LC | 1 | left | A | 0 | left | C |
C | 1RH | 1LD | 1 | right | H | 1 | left | D |
D | 1RD | 0RA | 1 | right | D | 0 | right | A |
Simulation is done just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as 2-macro machine. The same TM as 2-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . . . . 0 1 1 B . . . . . 10 2 0 A . . . . . 11 3 -1 B . . . . .011 4 -2 A . . . . 0111 5 -1 B . . . . 1111 6 -2 C . . . . 1011 7 -3 D . . . .01011 8 -2 D . . . .11011 9 -1 A . . . .10011 10 0 B . . . .10111 11 -1 C . . . .10101 12 -2 D . . . .10101 13 -1 D . . . .11101 14 0 A . . . .11001 15 1 B . . . .11011 16 0 C . . . .11010 17 -1 D . . . .11010 18 0 D . . . .11110 19 1 A . . . .11100 20 2 B . . . .111010 21 1 A . . . .111011 22 0 B . . . .111011 23 -1 A . . . .111111 24 -2 B . . . .111111 25 -3 C . . . .101111 26 -4 D . . . 0101111 27 -3 D . . . 1101111 28 -2 A . . . 1001111 29 -1 B . . . 1011111 30 -2 C . . . 1010111 31 -3 D . . . 1010111 32 -2 D . . . 1110111 33 -1 A . . . 1100111 34 0 B . . . 1101111 35 -1 C . . . 1101011 36 -2 D . . . 1101011 37 -1 D . . . 1111011 38 0 A . . . 1110011 39 1 B . . . 1110111 40 0 C . . . 1110101 41 -1 D . . . 1110101 42 0 D . . . 1111101 43 1 A . . . 1111001 44 2 B . . . 1111011 45 1 C . . . 1111010 46 0 D . . . 1111010 47 1 D . . . 1111110 48 2 A . . . 1111100 49 3 B . . . 11111010 50 2 A . . . 11111011 51 1 B . . . 11111011 52 0 A . . . 11111111 53 -1 B . . . 11111111 54 -2 C . . . 11101111 55 -3 D . . . 11101111 56 -2 A . . . 10101111 57 -3 B . . . 10101111 58 -4 A . . . 11101111 59 -5 B . . .011101111 60 -6 A . . 0111101111 61 -5 B . . 1111101111 62 -6 C . . 1011101111 63 -7 D . .01011101111 64 -6 D . .11011101111 65 -5 A . .10011101111 66 -4 B . .10111101111 67 -5 C . .10101101111 68 -6 D . .10101101111 69 -5 D . .11101101111 70 -4 A . .11001101111 71 -3 B . .11011101111 72 -4 C . .11010101111 73 -5 D . .11010101111 74 -4 D . .11110101111 75 -3 A . .11100101111 76 -2 B . .11101101111 77 -3 C . .11101001111 78 -4 D . .11101001111 79 -3 D . .11111001111 80 -2 A . .11110001111 81 -1 B . .11110101111 82 -2 A . .11110111111 83 -3 B . .11110111111 84 -4 A . .11111111111 85 -5 B . .11111111111 86 -6 C . .11011111111 87 -7 D . .11011111111 88 -6 A . .01011111111 89 -7 B . .01011111111 90 -8 A . 011011111111 91 -7 B . 111011111111 92 -8 C . 101011111111 93 -9 D .0101011111111 94 -8 D .1101011111111 95 -7 A .1001011111111 96 -6 B .1011011111111 97 -7 C .1010011111111 98 -8 D .1010011111111 99 -7 D .1110011111111 100 -6 A .1100011111111 101 -5 B .1101011111111 102 -6 A .1101111111111 103 -7 B .1101111111111 104 -8 A .1111111111111 105 -9 B .1111111111111 106 -10 C 00111111111111 107 -9 H 10111111111111 After 107 steps (108 lines): state = H. Produced 13 ones. Tape index -9, scanned [-10 .. 3].
State | Count | Execution count | First in step | ||
---|---|---|---|---|---|
on 0 | on 1 | on 0 | on 1 | ||
A | 30 | 18 | 12 | 0 | 2 |
B | 30 | 13 | 17 | 1 | 5 |
C | 17 | 1 | 16 | 106 | 6 |
D | 30 | 14 | 16 | 7 | 8 |