4-state Busy Beaver (by A.Brady)

Comment: This TM produces 13 ones in 107 steps.
Comment: Taken (cited) from P.Michel

State on
0
on
1
on 0 on 1
Print Move Goto Print Move Goto
A 1RB 1LB 1 right B 1 left B
B 1LA 0LC 1 left A 0 left C
C 1RH 1LD 1 right H 1 left D
D 1RD 0RA 1 right D 0 right A
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing macro factor 2.

Steps BasSteps BasTpos  Tape contents
    0        0       0  A>
    1        3      -1  <B 11
    2        7      -3  <D 10 11
    3        8      -2  01 D> 10 11
    4       10       0  012 B> 11
    5       11      -1  012 <C 01
    6       14       0  01 10 A> 01
    7       17      -1  01 10 <D 10
    8       18       0  01 11 D> 10
    9       20       2  01 11 01 B>
   10       21       1  01 11 01 <A 10
   11       23      -1  01 11 <A 11 10
   12       25      -3  01 <C 01 11 10
   13       28      -2  10 A> 01 11 10
   14       31      -3  10 <D 10 11 10
   15       32      -2  11 D> 10 11 10
   16       34       0  11 01 B> 11 10
   17       35      -1  11 01 <C 01 10
   18       38       0  11 10 A> 01 10
   19       41      -1  11 10 <D 102
   20       42       0  112 D> 102
   21       44       2  112 01 B> 10
   22       45       1  112 01 <C
   23       48       2  112 10 A>
   24       51       1  112 10 <B 11
   25       53      -1  112 <B 112
   26       55      -3  11 <D 10 112
   27       56      -2  10 A> 10 112
   28       57      -3  10 <B 10 112
   29       59      -5  <B 11 10 112
   30       63      -7  <D 10 11 10 112
   31       64      -6  01 D> 10 11 10 112
   32       66      -4  012 B> 11 10 112
   33       67      -5  012 <C 01 10 112
   34       70      -4  01 10 A> 01 10 112
   35       73      -5  01 10 <D 102 112
   36       74      -4  01 11 D> 102 112
   37       76      -2  01 11 01 B> 10 112
   38       77      -3  01 11 01 <C 00 112
   39       80      -2  01 11 10 A> 00 112
   40       83      -3  01 11 10 <B 113
   41       85      -5  01 11 <B 114
   42       87      -7  01 <D 10 114
   43       88      -6  A> 10 114
   44       89      -7  <B 10 114
   45       93      -9  <D 102 114
   46       94      -8  01 D> 102 114
   47       96      -6  012 B> 10 114
   48       97      -7  012 <C 00 114
   49      100      -6  01 10 A> 00 114
   50      103      -7  01 10 <B 115
   51      105      -9  01 <B 116
   52      107      -9  10 <H 116   [stop]

Lines:       53
Top steps:   52
Macro steps: 52
Basic steps: 107
Tape index:  -9
ones:        13
log10(ones    ):    1.114
log10(steps   ):    2.029
Run state:   stop

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    T 4-state Busy Beaver (by A.Brady)
    : 13 107
    C Taken (cited) from P.Michel
    5T  1RB 1LB  1LA 0LC  1RH 1LD  1RD 0RA
    L 10
    M	201
    pref	sim
    machv TM42_bb  	just simple
    machv TM42_bb-r	with repetitions reduced
    machv TM42_bb-1	with tape symbol exponents
    machv TM42_bb-m	as 2-macro machine
    machv TM42_bb-a	as 2-macro machine with pure additive config-TRs
    iam	TM42_bb-m
    mtype	2
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:12:33 CEST 2010
    edate	Tue Jul  6 22:12:33 CEST 2010
    bnspeed	1

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:12:33 CEST 2010
Ready: Tue Jul 6 22:12:33 CEST 2010