2-state 4-symbol formerly best (by Brady / Michel)

Comment: Taken (cited) from P.Michel
Comment: This TM produces 90 nonzeros in 7195 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on 0 on 1 on 2 on 3
Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 2LA 1RA 1LA 1 right B 2 left A 1 right A 1 left A
B 3LA 1RH 2RB 2RA 3 left A 1 right H 2 right B 2 right A
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . . 0
     1    1 B . . . 10
     2    0 A . . . 13
     3   -1 A . . .023
     4    0 B . . .123
     5    1 B . . .123
     6    2 A . . .1220
     7    3 B . . .12210
     8    2 A . . .12213
     9    1 A . . .12223
    10    2 A . . .12123
    11    3 A . . .12113
    12    2 A . . .12111
    13    1 A . . .12121
    14    0 A . . .12221
    15    1 A . . .11221
    16    2 A . . .11121
    17    3 A . . .11111
    18    2 A . . .11112
    19    1 A . . .11122
    20    0 A . . .11222
    21   -1 A . . .12222
    22   -2 A . . 022222
    23   -1 B . . 122222
    24    0 B . . 122222
    25    1 B . . 122222
    26    2 B . . 122222
    27    3 B . . 122222
    28    4 B . . 1222220
    29    3 A . . 1222223
    30    4 A . . 1222213
    31    3 A . . 1222211
    32    2 A . . 1222221
    33    3 A . . 1222121
    34    4 A . . 1222111
    35    3 A . . 1222112
    36    2 A . . 1222122
    37    1 A . . 1222222
    38    2 A . . 1221222
    39    3 A . . 1221122
    40    4 A . . 1221112
    41    5 A . . 12211110
    42    6 B . . 122111110
    43    5 A . . 122111113
    44    4 A . . 122111123
    45    3 A . . 122111223
    46    2 A . . 122112223
    47    1 A . . 122122223
    48    0 A . . 122222223
    49    1 A . . 121222223
    50    2 A . . 121122223
    51    3 A . . 121112223
    52    4 A . . 121111223
    53    5 A . . 121111123
    54    6 A . . 121111113
    55    5 A . . 121111111
    56    4 A . . 121111121
    57    3 A . . 121111221
    58    2 A . . 121112221
    59    1 A . . 121122221
    60    0 A . . 121222221
    61   -1 A . . 122222221
    62    0 A . . 112222221
    63    1 A . . 111222221
    64    2 A . . 111122221
    65    3 A . . 111112221
    66    4 A . . 111111221
    67    5 A . . 111111121
    68    6 A . . 111111111
    69    5 A . . 111111112
    70    4 A . . 111111122
    71    3 A . . 111111222
    72    2 A . . 111112222
    73    1 A . . 111122222
    74    0 A . . 111222222
    75   -1 A . . 112222222
    76   -2 A . . 122222222
    77   -3 A . .0222222222
    78   -2 B . .1222222222
    79   -1 B . .1222222222
    80    0 B . .1222222222
    81    1 B . .1222222222
    82    2 B . .1222222222
    83    3 B . .1222222222
    84    4 B . .1222222222
    85    5 B . .1222222222
    86    6 B . .1222222222
    87    7 B . .12222222220
    88    6 A . .12222222223
    89    7 A . .12222222213
    90    6 A . .12222222211
    91    5 A . .12222222221
    92    6 A . .12222222121
    93    7 A . .12222222111
    94    6 A . .12222222112
    95    5 A . .12222222122
    96    4 A . .12222222222
    97    5 A . .12222221222
    98    6 A . .12222221122
    99    7 A . .12222221112
   100    8 A . .122222211110
   101    9 B . .1222222111110
   102    8 A . .1222222111113
   103    7 A . .1222222111123
   104    6 A . .1222222111223
   105    5 A . .1222222112223
   106    4 A . .1222222122223
   107    3 A . .1222222222223
   108    4 A . .1222221222223
   109    5 A . .1222221122223
   110    6 A . .1222221112223
   111    7 A . .1222221111223
   112    8 A . .1222221111123
   113    9 A . .1222221111113
   114    8 A . .1222221111111
   115    7 A . .1222221111121
   116    6 A . .1222221111221
   117    5 A . .1222221112221
   118    4 A . .1222221122221
   119    3 A . .1222221222221
   120    2 A . .1222222222221
   121    3 A . .1222212222221
   122    4 A . .1222211222221
   123    5 A . .1222211122221
   124    6 A . .1222211112221
   125    7 A . .1222211111221
   126    8 A . .1222211111121
   127    9 A . .1222211111111
   128    8 A . .1222211111112
   129    7 A . .1222211111122
   130    6 A . .1222211111222
   131    5 A . .1222211112222
   132    4 A . .1222211122222
   133    3 A . .1222211222222
   134    2 A . .1222212222222
   135    1 A . .1222222222222
   136    2 A . .1222122222222
   137    3 A . .1222112222222
   138    4 A . .1222111222222
   139    5 A . .1222111122222
   140    6 A . .1222111112222
   141    7 A . .1222111111222
   142    8 A . .1222111111122
   143    9 A . .1222111111112
   144   10 A . .12221111111110
   145   11 B . .122211111111110
   146   10 A . .122211111111113
   147    9 A . .122211111111123
   148    8 A . .122211111111223
   149    7 A . .122211111112223
   150    6 A . .122211111122223
   151    5 A . .122211111222223
   152    4 A . .122211112222223
   153    3 A . .122211122222223
   154    2 A . .122211222222223
   155    1 A . .122212222222223
   156    0 A . .122222222222223
   157    1 A . .122122222222223
   158    2 A . .122112222222223
   159    3 A . .122111222222223
   160    4 A . .122111122222223
   161    5 A . .122111112222223
   162    6 A . .122111111222223
   163    7 A . .122111111122223
   164    8 A . .122111111112223
   165    9 A . .122111111111223
   166   10 A . .122111111111123
   167   11 A . .122111111111113
   168   10 A . .122111111111111
   169    9 A . .122111111111121
   170    8 A . .122111111111221
   171    7 A . .122111111112221
   172    6 A . .122111111122221
   173    5 A . .122111111222221
   174    4 A . .122111112222221
   175    3 A . .122111122222221
   176    2 A . .122111222222221
   177    1 A . .122112222222221
   178    0 A . .122122222222221
   179   -1 A . .122222222222221
   180    0 A . .121222222222221
   181    1 A . .121122222222221
   182    2 A . .121112222222221
   183    3 A . .121111222222221
   184    4 A . .121111122222221
   185    5 A . .121111112222221
   186    6 A . .121111111222221
   187    7 A . .121111111122221
   188    8 A . .121111111112221
   189    9 A . .121111111111221
   190   10 A . .121111111111121
   191   11 A . .121111111111111
   192   10 A . .121111111111112
   193    9 A . .121111111111122
   194    8 A . .121111111111222
   195    7 A . .121111111112222
   196    6 A . .121111111122222
   197    5 A . .121111111222222
   198    4 A . .121111112222222
   199    3 A . .121111122222222
   200    2 A . .121111222222222

After 200 steps (201 lines): state = A.
Produced     15 nonzeros.
Tape index 2, scanned [-3 .. 11].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 0 on 1 on 2 on 3
A 177 8 86 77 6 0 2 9 11
B 23 7   15 1 1   4 5
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:36 CEST 2010