Comment: Taken (cited) from P.Michel Comment: This TM produces 90 nonzeros in 7195 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
A | 1RB | 2LA | 1RA | 1LA | 1 | right | B | 2 | left | A | 1 | right | A | 1 | left | A |
B | 3LA | 1RH | 2RB | 2RA | 3 | left | A | 1 | right | H | 2 | right | B | 2 | right | A |
Simulation is done just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . . 0 1 1 B . . . 10 2 0 A . . . 13 3 -1 A . . .023 4 0 B . . .123 5 1 B . . .123 6 2 A . . .1220 7 3 B . . .12210 8 2 A . . .12213 9 1 A . . .12223 10 2 A . . .12123 11 3 A . . .12113 12 2 A . . .12111 13 1 A . . .12121 14 0 A . . .12221 15 1 A . . .11221 16 2 A . . .11121 17 3 A . . .11111 18 2 A . . .11112 19 1 A . . .11122 20 0 A . . .11222 21 -1 A . . .12222 22 -2 A . . 022222 23 -1 B . . 122222 24 0 B . . 122222 25 1 B . . 122222 26 2 B . . 122222 27 3 B . . 122222 28 4 B . . 1222220 29 3 A . . 1222223 30 4 A . . 1222213 31 3 A . . 1222211 32 2 A . . 1222221 33 3 A . . 1222121 34 4 A . . 1222111 35 3 A . . 1222112 36 2 A . . 1222122 37 1 A . . 1222222 38 2 A . . 1221222 39 3 A . . 1221122 40 4 A . . 1221112 41 5 A . . 12211110 42 6 B . . 122111110 43 5 A . . 122111113 44 4 A . . 122111123 45 3 A . . 122111223 46 2 A . . 122112223 47 1 A . . 122122223 48 0 A . . 122222223 49 1 A . . 121222223 50 2 A . . 121122223 51 3 A . . 121112223 52 4 A . . 121111223 53 5 A . . 121111123 54 6 A . . 121111113 55 5 A . . 121111111 56 4 A . . 121111121 57 3 A . . 121111221 58 2 A . . 121112221 59 1 A . . 121122221 60 0 A . . 121222221 61 -1 A . . 122222221 62 0 A . . 112222221 63 1 A . . 111222221 64 2 A . . 111122221 65 3 A . . 111112221 66 4 A . . 111111221 67 5 A . . 111111121 68 6 A . . 111111111 69 5 A . . 111111112 70 4 A . . 111111122 71 3 A . . 111111222 72 2 A . . 111112222 73 1 A . . 111122222 74 0 A . . 111222222 75 -1 A . . 112222222 76 -2 A . . 122222222 77 -3 A . .0222222222 78 -2 B . .1222222222 79 -1 B . .1222222222 80 0 B . .1222222222 81 1 B . .1222222222 82 2 B . .1222222222 83 3 B . .1222222222 84 4 B . .1222222222 85 5 B . .1222222222 86 6 B . .1222222222 87 7 B . .12222222220 88 6 A . .12222222223 89 7 A . .12222222213 90 6 A . .12222222211 91 5 A . .12222222221 92 6 A . .12222222121 93 7 A . .12222222111 94 6 A . .12222222112 95 5 A . .12222222122 96 4 A . .12222222222 97 5 A . .12222221222 98 6 A . .12222221122 99 7 A . .12222221112 100 8 A . .122222211110 101 9 B . .1222222111110 102 8 A . .1222222111113 103 7 A . .1222222111123 104 6 A . .1222222111223 105 5 A . .1222222112223 106 4 A . .1222222122223 107 3 A . .1222222222223 108 4 A . .1222221222223 109 5 A . .1222221122223 110 6 A . .1222221112223 111 7 A . .1222221111223 112 8 A . .1222221111123 113 9 A . .1222221111113 114 8 A . .1222221111111 115 7 A . .1222221111121 116 6 A . .1222221111221 117 5 A . .1222221112221 118 4 A . .1222221122221 119 3 A . .1222221222221 120 2 A . .1222222222221 121 3 A . .1222212222221 122 4 A . .1222211222221 123 5 A . .1222211122221 124 6 A . .1222211112221 125 7 A . .1222211111221 126 8 A . .1222211111121 127 9 A . .1222211111111 128 8 A . .1222211111112 129 7 A . .1222211111122 130 6 A . .1222211111222 131 5 A . .1222211112222 132 4 A . .1222211122222 133 3 A . .1222211222222 134 2 A . .1222212222222 135 1 A . .1222222222222 136 2 A . .1222122222222 137 3 A . .1222112222222 138 4 A . .1222111222222 139 5 A . .1222111122222 140 6 A . .1222111112222 141 7 A . .1222111111222 142 8 A . .1222111111122 143 9 A . .1222111111112 144 10 A . .12221111111110 145 11 B . .122211111111110 146 10 A . .122211111111113 147 9 A . .122211111111123 148 8 A . .122211111111223 149 7 A . .122211111112223 150 6 A . .122211111122223 151 5 A . .122211111222223 152 4 A . .122211112222223 153 3 A . .122211122222223 154 2 A . .122211222222223 155 1 A . .122212222222223 156 0 A . .122222222222223 157 1 A . .122122222222223 158 2 A . .122112222222223 159 3 A . .122111222222223 160 4 A . .122111122222223 161 5 A . .122111112222223 162 6 A . .122111111222223 163 7 A . .122111111122223 164 8 A . .122111111112223 165 9 A . .122111111111223 166 10 A . .122111111111123 167 11 A . .122111111111113 168 10 A . .122111111111111 169 9 A . .122111111111121 170 8 A . .122111111111221 171 7 A . .122111111112221 172 6 A . .122111111122221 173 5 A . .122111111222221 174 4 A . .122111112222221 175 3 A . .122111122222221 176 2 A . .122111222222221 177 1 A . .122112222222221 178 0 A . .122122222222221 179 -1 A . .122222222222221 180 0 A . .121222222222221 181 1 A . .121122222222221 182 2 A . .121112222222221 183 3 A . .121111222222221 184 4 A . .121111122222221 185 5 A . .121111112222221 186 6 A . .121111111222221 187 7 A . .121111111122221 188 8 A . .121111111112221 189 9 A . .121111111111221 190 10 A . .121111111111121 191 11 A . .121111111111111 192 10 A . .121111111111112 193 9 A . .121111111111122 194 8 A . .121111111111222 195 7 A . .121111111112222 196 6 A . .121111111122222 197 5 A . .121111111222222 198 4 A . .121111112222222 199 3 A . .121111122222222 200 2 A . .121111222222222 After 200 steps (201 lines): state = A. Produced 15 nonzeros. Tape index 2, scanned [-3 .. 11].
State | Count | Execution count | First in step | ||||||
---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
A | 177 | 8 | 86 | 77 | 6 | 0 | 2 | 9 | 11 |
B | 23 | 7 | 15 | 1 | 1 | 4 | 5 |