Comment: Taken (cited) from P.Michel Comment: This TM produces 90 nonzeros in 7195 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
| A | 1RB | 2LA | 1RA | 1LA | 1 | right | B | 2 | left | A | 1 | right | A | 1 | left | A |
| B | 3LA | 1RH | 2RB | 2RA | 3 | left | A | 1 | right | H | 2 | right | B | 2 | right | A |
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Step Tpos St Tape contents
0 0 A . . . 0
1 1 B . . . 10
2 0 A . . . 13
3 -1 A . . .023
4 0 B . . .123
5 1 B . . .123
6 2 A . . .1220
7 3 B . . .12210
8 2 A . . .12213
9 1 A . . .12223
10 2 A . . .12123
11 3 A . . .12113
12 2 A . . .12111
13 1 A . . .12121
14 0 A . . .12221
15 1 A . . .11221
16 2 A . . .11121
17 3 A . . .11111
18 2 A . . .11112
19 1 A . . .11122
20 0 A . . .11222
21 -1 A . . .12222
22 -2 A . . 022222
23 -1 B . . 122222
24 0 B . . 122222
25 1 B . . 122222
26 2 B . . 122222
27 3 B . . 122222
28 4 B . . 1222220
29 3 A . . 1222223
30 4 A . . 1222213
31 3 A . . 1222211
32 2 A . . 1222221
33 3 A . . 1222121
34 4 A . . 1222111
35 3 A . . 1222112
36 2 A . . 1222122
37 1 A . . 1222222
38 2 A . . 1221222
39 3 A . . 1221122
40 4 A . . 1221112
41 5 A . . 12211110
42 6 B . . 122111110
43 5 A . . 122111113
44 4 A . . 122111123
45 3 A . . 122111223
46 2 A . . 122112223
47 1 A . . 122122223
48 0 A . . 122222223
49 1 A . . 121222223
50 2 A . . 121122223
51 3 A . . 121112223
52 4 A . . 121111223
53 5 A . . 121111123
54 6 A . . 121111113
55 5 A . . 121111111
56 4 A . . 121111121
57 3 A . . 121111221
58 2 A . . 121112221
59 1 A . . 121122221
60 0 A . . 121222221
61 -1 A . . 122222221
62 0 A . . 112222221
63 1 A . . 111222221
64 2 A . . 111122221
65 3 A . . 111112221
66 4 A . . 111111221
67 5 A . . 111111121
68 6 A . . 111111111
69 5 A . . 111111112
70 4 A . . 111111122
71 3 A . . 111111222
72 2 A . . 111112222
73 1 A . . 111122222
74 0 A . . 111222222
75 -1 A . . 112222222
76 -2 A . . 122222222
77 -3 A . .0222222222
78 -2 B . .1222222222
79 -1 B . .1222222222
80 0 B . .1222222222
81 1 B . .1222222222
82 2 B . .1222222222
83 3 B . .1222222222
84 4 B . .1222222222
85 5 B . .1222222222
86 6 B . .1222222222
87 7 B . .12222222220
88 6 A . .12222222223
89 7 A . .12222222213
90 6 A . .12222222211
91 5 A . .12222222221
92 6 A . .12222222121
93 7 A . .12222222111
94 6 A . .12222222112
95 5 A . .12222222122
96 4 A . .12222222222
97 5 A . .12222221222
98 6 A . .12222221122
99 7 A . .12222221112
100 8 A . .122222211110
101 9 B . .1222222111110
102 8 A . .1222222111113
103 7 A . .1222222111123
104 6 A . .1222222111223
105 5 A . .1222222112223
106 4 A . .1222222122223
107 3 A . .1222222222223
108 4 A . .1222221222223
109 5 A . .1222221122223
110 6 A . .1222221112223
111 7 A . .1222221111223
112 8 A . .1222221111123
113 9 A . .1222221111113
114 8 A . .1222221111111
115 7 A . .1222221111121
116 6 A . .1222221111221
117 5 A . .1222221112221
118 4 A . .1222221122221
119 3 A . .1222221222221
120 2 A . .1222222222221
121 3 A . .1222212222221
122 4 A . .1222211222221
123 5 A . .1222211122221
124 6 A . .1222211112221
125 7 A . .1222211111221
126 8 A . .1222211111121
127 9 A . .1222211111111
128 8 A . .1222211111112
129 7 A . .1222211111122
130 6 A . .1222211111222
131 5 A . .1222211112222
132 4 A . .1222211122222
133 3 A . .1222211222222
134 2 A . .1222212222222
135 1 A . .1222222222222
136 2 A . .1222122222222
137 3 A . .1222112222222
138 4 A . .1222111222222
139 5 A . .1222111122222
140 6 A . .1222111112222
141 7 A . .1222111111222
142 8 A . .1222111111122
143 9 A . .1222111111112
144 10 A . .12221111111110
145 11 B . .122211111111110
146 10 A . .122211111111113
147 9 A . .122211111111123
148 8 A . .122211111111223
149 7 A . .122211111112223
150 6 A . .122211111122223
151 5 A . .122211111222223
152 4 A . .122211112222223
153 3 A . .122211122222223
154 2 A . .122211222222223
155 1 A . .122212222222223
156 0 A . .122222222222223
157 1 A . .122122222222223
158 2 A . .122112222222223
159 3 A . .122111222222223
160 4 A . .122111122222223
161 5 A . .122111112222223
162 6 A . .122111111222223
163 7 A . .122111111122223
164 8 A . .122111111112223
165 9 A . .122111111111223
166 10 A . .122111111111123
167 11 A . .122111111111113
168 10 A . .122111111111111
169 9 A . .122111111111121
170 8 A . .122111111111221
171 7 A . .122111111112221
172 6 A . .122111111122221
173 5 A . .122111111222221
174 4 A . .122111112222221
175 3 A . .122111122222221
176 2 A . .122111222222221
177 1 A . .122112222222221
178 0 A . .122122222222221
179 -1 A . .122222222222221
180 0 A . .121222222222221
181 1 A . .121122222222221
182 2 A . .121112222222221
183 3 A . .121111222222221
184 4 A . .121111122222221
185 5 A . .121111112222221
186 6 A . .121111111222221
187 7 A . .121111111122221
188 8 A . .121111111112221
189 9 A . .121111111111221
190 10 A . .121111111111121
191 11 A . .121111111111111
192 10 A . .121111111111112
193 9 A . .121111111111122
194 8 A . .121111111111222
195 7 A . .121111111112222
196 6 A . .121111111122222
197 5 A . .121111111222222
198 4 A . .121111112222222
199 3 A . .121111122222222
200 2 A . .121111222222222
After 200 steps (201 lines): state = A.
Produced 15 nonzeros.
Tape index 2, scanned [-3 .. 11].
| State | Count | Execution count | First in step | ||||||
|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
| A | 177 | 8 | 86 | 77 | 6 | 0 | 2 | 9 | 11 |
| B | 23 | 7 | 15 | 1 | 1 | 4 | 5 | ||