Comment: Taken (cited) from P.Michel Comment: This TM produces 90 nonzeros in 7195 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
A | 1RB | 2LA | 1RA | 1LA | 1 | right | B | 2 | left | A | 1 | right | A | 1 | left | A |
B | 3LA | 1RH | 2RB | 2RA | 3 | left | A | 1 | right | H | 2 | right | B | 2 | right | A |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 3 3 -1 <A 2 3 4 0 1 B> 2 3 5 1 1 2 B> 3 6 2 1 2 2 A> 7 3 1 2 2 1 B> 8 2 1 2 2 1 <A 3 9 1 1 2 2 <A 2 3 10 2 1 2 1 A> 2 3 11 3 1 2 1 1 A> 3 12 2 1 2 1 1 <A 1 + 14 0 1 2 <A 2 2 1 15 1 1 1 A> 2 2 1 + 17 3 14 A> 1 18 2 14 <A 2 + 22 -2 <A 25 23 -1 1 B> 25 + 28 4 1 25 B> 29 3 1 25 <A 3 30 4 1 24 1 A> 3 31 3 1 24 1 <A 1 32 2 1 24 <A 2 1 33 3 1 23 1 A> 2 1 34 4 1 23 1 1 A> 1 35 3 1 23 1 1 <A 2 + 37 1 1 23 <A 23 38 2 1 2 2 1 A> 23 + 41 5 1 2 2 14 A> 42 6 1 2 2 15 B> 43 5 1 2 2 15 <A 3 + 48 0 1 2 2 <A 25 3 49 1 1 2 1 A> 25 3 + 54 6 1 2 16 A> 3 55 5 1 2 16 <A 1 + 61 -1 1 2 <A 26 1 62 0 1 1 A> 26 1 + 68 6 18 A> 1 69 5 18 <A 2 + 77 -3 <A 29 78 -2 1 B> 29 + 87 7 1 29 B> 88 6 1 29 <A 3 89 7 1 28 1 A> 3 90 6 1 28 1 <A 1 91 5 1 28 <A 2 1 92 6 1 27 1 A> 2 1 93 7 1 27 1 1 A> 1 94 6 1 27 1 1 <A 2 + 96 4 1 27 <A 23 97 5 1 26 1 A> 23 + 100 8 1 26 14 A> 101 9 1 26 15 B> 102 8 1 26 15 <A 3 + 107 3 1 26 <A 25 3 108 4 1 25 1 A> 25 3 + 113 9 1 25 16 A> 3 114 8 1 25 16 <A 1 + 120 2 1 25 <A 26 1 121 3 1 24 1 A> 26 1 + 127 9 1 24 17 A> 1 128 8 1 24 17 <A 2 + 135 1 1 24 <A 28 136 2 1 23 1 A> 28 + 144 10 1 23 19 A> 145 11 1 23 110 B> 146 10 1 23 110 <A 3 + 156 0 1 23 <A 210 3 157 1 1 2 2 1 A> 210 3 + 167 11 1 2 2 111 A> 3 168 10 1 2 2 111 <A 1 + 179 -1 1 2 2 <A 211 1 180 0 1 2 1 A> 211 1 + 191 11 1 2 112 A> 1 192 10 1 2 112 <A 2 + 204 -2 1 2 <A 213 205 -1 1 1 A> 213 + 218 12 115 A> 219 13 116 B> 220 12 116 <A 3 + 236 -4 <A 216 3 237 -3 1 B> 216 3 + 253 13 1 216 B> 3 254 14 1 217 A> 255 15 1 217 1 B> 256 14 1 217 1 <A 3 257 13 1 217 <A 2 3 258 14 1 216 1 A> 2 3 259 15 1 216 1 1 A> 3 260 14 1 216 1 1 <A 1 + 262 12 1 216 <A 2 2 1 263 13 1 215 1 A> 2 2 1 + 265 15 1 215 13 A> 1 266 14 1 215 13 <A 2 + 269 11 1 215 <A 24 270 12 1 214 1 A> 24 + 274 16 1 214 15 A> 275 17 1 214 16 B> 276 16 1 214 16 <A 3 + 282 10 1 214 <A 26 3 283 11 1 213 1 A> 26 3 + 289 17 1 213 17 A> 3 290 16 1 213 17 <A 1 + 297 9 1 213 <A 27 1 298 10 1 212 1 A> 27 1 + 305 17 1 212 18 A> 1 306 16 1 212 18 <A 2 + 314 8 1 212 <A 29 315 9 1 211 1 A> 29 + 324 18 1 211 110 A> 325 19 1 211 111 B> 326 18 1 211 111 <A 3 + 337 7 1 211 <A 211 3 338 8 1 210 1 A> 211 3 + 349 19 1 210 112 A> 3 350 18 1 210 112 <A 1 + 362 6 1 210 <A 212 1 363 7 1 29 1 A> 212 1 + 375 19 1 29 113 A> 1 376 18 1 29 113 <A 2 + 389 5 1 29 <A 214 390 6 1 28 1 A> 214 + 404 20 1 28 115 A> 405 21 1 28 116 B> 406 20 1 28 116 <A 3 + 422 4 1 28 <A 216 3 423 5 1 27 1 A> 216 3 + 439 21 1 27 117 A> 3 440 20 1 27 117 <A 1 + 457 3 1 27 <A 217 1 458 4 1 26 1 A> 217 1 + 475 21 1 26 118 A> 1 476 20 1 26 118 <A 2 + 494 2 1 26 <A 219 495 3 1 25 1 A> 219 + 514 22 1 25 120 A> 515 23 1 25 121 B> 516 22 1 25 121 <A 3 + 537 1 1 25 <A 221 3 538 2 1 24 1 A> 221 3 + 559 23 1 24 122 A> 3 560 22 1 24 122 <A 1 + 582 0 1 24 <A 222 1 583 1 1 23 1 A> 222 1 + 605 23 1 23 123 A> 1 606 22 1 23 123 <A 2 + 629 -1 1 23 <A 224 630 0 1 2 2 1 A> 224 + 654 24 1 2 2 125 A> 655 25 1 2 2 126 B> 656 24 1 2 2 126 <A 3 + 682 -2 1 2 2 <A 226 3 683 -1 1 2 1 A> 226 3 + 709 25 1 2 127 A> 3 710 24 1 2 127 <A 1 + 737 -3 1 2 <A 227 1 738 -2 1 1 A> 227 1 + 765 25 129 A> 1 766 24 129 <A 2 + 795 -5 <A 230 796 -4 1 B> 230 + 826 26 1 230 B> 827 25 1 230 <A 3 828 26 1 229 1 A> 3 829 25 1 229 1 <A 1 830 24 1 229 <A 2 1 831 25 1 228 1 A> 2 1 832 26 1 228 1 1 A> 1 833 25 1 228 1 1 <A 2 + 835 23 1 228 <A 23 836 24 1 227 1 A> 23 + 839 27 1 227 14 A> 840 28 1 227 15 B> 841 27 1 227 15 <A 3 + 846 22 1 227 <A 25 3 847 23 1 226 1 A> 25 3 + 852 28 1 226 16 A> 3 853 27 1 226 16 <A 1 + 859 21 1 226 <A 26 1 860 22 1 225 1 A> 26 1 + 866 28 1 225 17 A> 1 867 27 1 225 17 <A 2 + 874 20 1 225 <A 28 875 21 1 224 1 A> 28 + 883 29 1 224 19 A> 884 30 1 224 110 B> 885 29 1 224 110 <A 3 + 895 19 1 224 <A 210 3 896 20 1 223 1 A> 210 3 + 906 30 1 223 111 A> 3 907 29 1 223 111 <A 1 + 918 18 1 223 <A 211 1 919 19 1 222 1 A> 211 1 + 930 30 1 222 112 A> 1 931 29 1 222 112 <A 2 + 943 17 1 222 <A 213 944 18 1 221 1 A> 213 + 957 31 1 221 114 A> 958 32 1 221 115 B> 959 31 1 221 115 <A 3 After 959 steps (201 lines): state = A. Produced 38 nonzeros. Tape index 31, scanned [-5 .. 32].
State | Count | Execution count | First in step | ||||||
---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
A | 878 | 20 | 431 | 412 | 15 | 0 | 2 | 9 | 11 |
B | 81 | 18 | 61 | 2 | 1 | 4 | 5 |