Comment: Taken (cited) from P.Michel Comment: This TM produces 90 nonzeros in 7195 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
| A | 1RB | 2LA | 1RA | 1LA | 1 | right | B | 2 | left | A | 1 | right | A | 1 | left | A |
| B | 3LA | 1RH | 2RB | 2RA | 3 | left | A | 1 | right | H | 2 | right | B | 2 | right | A |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A 3
3 -1 <A 2 3
4 0 1 B> 2 3
5 1 1 2 B> 3
6 2 1 2 2 A>
7 3 1 2 2 1 B>
8 2 1 2 2 1 <A 3
9 1 1 2 2 <A 2 3
10 2 1 2 1 A> 2 3
11 3 1 2 1 1 A> 3
12 2 1 2 1 1 <A 1
+ 14 0 1 2 <A 2 2 1
15 1 1 1 A> 2 2 1
+ 17 3 14 A> 1
18 2 14 <A 2
+ 22 -2 <A 25
23 -1 1 B> 25
+ 28 4 1 25 B>
29 3 1 25 <A 3
30 4 1 24 1 A> 3
31 3 1 24 1 <A 1
32 2 1 24 <A 2 1
33 3 1 23 1 A> 2 1
34 4 1 23 1 1 A> 1
35 3 1 23 1 1 <A 2
+ 37 1 1 23 <A 23
38 2 1 2 2 1 A> 23
+ 41 5 1 2 2 14 A>
42 6 1 2 2 15 B>
43 5 1 2 2 15 <A 3
+ 48 0 1 2 2 <A 25 3
49 1 1 2 1 A> 25 3
+ 54 6 1 2 16 A> 3
55 5 1 2 16 <A 1
+ 61 -1 1 2 <A 26 1
62 0 1 1 A> 26 1
+ 68 6 18 A> 1
69 5 18 <A 2
+ 77 -3 <A 29
78 -2 1 B> 29
+ 87 7 1 29 B>
88 6 1 29 <A 3
89 7 1 28 1 A> 3
90 6 1 28 1 <A 1
91 5 1 28 <A 2 1
92 6 1 27 1 A> 2 1
93 7 1 27 1 1 A> 1
94 6 1 27 1 1 <A 2
+ 96 4 1 27 <A 23
97 5 1 26 1 A> 23
+ 100 8 1 26 14 A>
101 9 1 26 15 B>
102 8 1 26 15 <A 3
+ 107 3 1 26 <A 25 3
108 4 1 25 1 A> 25 3
+ 113 9 1 25 16 A> 3
114 8 1 25 16 <A 1
+ 120 2 1 25 <A 26 1
121 3 1 24 1 A> 26 1
+ 127 9 1 24 17 A> 1
128 8 1 24 17 <A 2
+ 135 1 1 24 <A 28
136 2 1 23 1 A> 28
+ 144 10 1 23 19 A>
145 11 1 23 110 B>
146 10 1 23 110 <A 3
+ 156 0 1 23 <A 210 3
157 1 1 2 2 1 A> 210 3
+ 167 11 1 2 2 111 A> 3
168 10 1 2 2 111 <A 1
+ 179 -1 1 2 2 <A 211 1
180 0 1 2 1 A> 211 1
+ 191 11 1 2 112 A> 1
192 10 1 2 112 <A 2
+ 204 -2 1 2 <A 213
205 -1 1 1 A> 213
+ 218 12 115 A>
219 13 116 B>
220 12 116 <A 3
+ 236 -4 <A 216 3
237 -3 1 B> 216 3
+ 253 13 1 216 B> 3
254 14 1 217 A>
255 15 1 217 1 B>
256 14 1 217 1 <A 3
257 13 1 217 <A 2 3
258 14 1 216 1 A> 2 3
259 15 1 216 1 1 A> 3
260 14 1 216 1 1 <A 1
+ 262 12 1 216 <A 2 2 1
263 13 1 215 1 A> 2 2 1
+ 265 15 1 215 13 A> 1
266 14 1 215 13 <A 2
+ 269 11 1 215 <A 24
270 12 1 214 1 A> 24
+ 274 16 1 214 15 A>
275 17 1 214 16 B>
276 16 1 214 16 <A 3
+ 282 10 1 214 <A 26 3
283 11 1 213 1 A> 26 3
+ 289 17 1 213 17 A> 3
290 16 1 213 17 <A 1
+ 297 9 1 213 <A 27 1
298 10 1 212 1 A> 27 1
+ 305 17 1 212 18 A> 1
306 16 1 212 18 <A 2
+ 314 8 1 212 <A 29
315 9 1 211 1 A> 29
+ 324 18 1 211 110 A>
325 19 1 211 111 B>
326 18 1 211 111 <A 3
+ 337 7 1 211 <A 211 3
338 8 1 210 1 A> 211 3
+ 349 19 1 210 112 A> 3
350 18 1 210 112 <A 1
+ 362 6 1 210 <A 212 1
363 7 1 29 1 A> 212 1
+ 375 19 1 29 113 A> 1
376 18 1 29 113 <A 2
+ 389 5 1 29 <A 214
390 6 1 28 1 A> 214
+ 404 20 1 28 115 A>
405 21 1 28 116 B>
406 20 1 28 116 <A 3
+ 422 4 1 28 <A 216 3
423 5 1 27 1 A> 216 3
+ 439 21 1 27 117 A> 3
440 20 1 27 117 <A 1
+ 457 3 1 27 <A 217 1
458 4 1 26 1 A> 217 1
+ 475 21 1 26 118 A> 1
476 20 1 26 118 <A 2
+ 494 2 1 26 <A 219
495 3 1 25 1 A> 219
+ 514 22 1 25 120 A>
515 23 1 25 121 B>
516 22 1 25 121 <A 3
+ 537 1 1 25 <A 221 3
538 2 1 24 1 A> 221 3
+ 559 23 1 24 122 A> 3
560 22 1 24 122 <A 1
+ 582 0 1 24 <A 222 1
583 1 1 23 1 A> 222 1
+ 605 23 1 23 123 A> 1
606 22 1 23 123 <A 2
+ 629 -1 1 23 <A 224
630 0 1 2 2 1 A> 224
+ 654 24 1 2 2 125 A>
655 25 1 2 2 126 B>
656 24 1 2 2 126 <A 3
+ 682 -2 1 2 2 <A 226 3
683 -1 1 2 1 A> 226 3
+ 709 25 1 2 127 A> 3
710 24 1 2 127 <A 1
+ 737 -3 1 2 <A 227 1
738 -2 1 1 A> 227 1
+ 765 25 129 A> 1
766 24 129 <A 2
+ 795 -5 <A 230
796 -4 1 B> 230
+ 826 26 1 230 B>
827 25 1 230 <A 3
828 26 1 229 1 A> 3
829 25 1 229 1 <A 1
830 24 1 229 <A 2 1
831 25 1 228 1 A> 2 1
832 26 1 228 1 1 A> 1
833 25 1 228 1 1 <A 2
+ 835 23 1 228 <A 23
836 24 1 227 1 A> 23
+ 839 27 1 227 14 A>
840 28 1 227 15 B>
841 27 1 227 15 <A 3
+ 846 22 1 227 <A 25 3
847 23 1 226 1 A> 25 3
+ 852 28 1 226 16 A> 3
853 27 1 226 16 <A 1
+ 859 21 1 226 <A 26 1
860 22 1 225 1 A> 26 1
+ 866 28 1 225 17 A> 1
867 27 1 225 17 <A 2
+ 874 20 1 225 <A 28
875 21 1 224 1 A> 28
+ 883 29 1 224 19 A>
884 30 1 224 110 B>
885 29 1 224 110 <A 3
+ 895 19 1 224 <A 210 3
896 20 1 223 1 A> 210 3
+ 906 30 1 223 111 A> 3
907 29 1 223 111 <A 1
+ 918 18 1 223 <A 211 1
919 19 1 222 1 A> 211 1
+ 930 30 1 222 112 A> 1
931 29 1 222 112 <A 2
+ 943 17 1 222 <A 213
944 18 1 221 1 A> 213
+ 957 31 1 221 114 A>
958 32 1 221 115 B>
959 31 1 221 115 <A 3
After 959 steps (201 lines): state = A.
Produced 38 nonzeros.
Tape index 31, scanned [-5 .. 32].
| State | Count | Execution count | First in step | ||||||
|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
| A | 878 | 20 | 431 | 412 | 15 | 0 | 2 | 9 | 11 |
| B | 81 | 18 | 61 | 2 | 1 | 4 | 5 | ||