Comment: This TM produces >4.6x10^1439 ones in >2.5x10^2879 steps. Comment: This was the best known 6x2 TM until May-2010 Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 0 | on 1 | ||||
---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | |||||
A | 1RB | 0LE | 1 | right | B | 0 | left | E |
B | 1LC | 0RA | 1 | left | C | 0 | right | A |
C | 1LD | 0RC | 1 | left | D | 0 | right | C |
D | 1LE | 0LF | 1 | left | E | 0 | left | F |
E | 1LA | 1LC | 1 | left | A | 1 | left | C |
F | 1LE | 1RH | 1 | left | E | 1 | right | H |
Simulation is done just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as 2-bck-2-macro machine. The same TM as 2-bck-2-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . . . . . . . . 0 1 1 B . . . . . . . . . 10 2 0 C . . . . . . . . . 11 3 1 C . . . . . . . . . 01 4 2 C . . . . . . . . . 000 5 1 D . . . . . . . . . 001 6 0 E . . . . . . . . . 011 7 -1 A . . . . . . . . .0111 8 0 B . . . . . . . . .1111 9 1 A . . . . . . . . .1011 10 0 E . . . . . . . . .1001 11 -1 A . . . . . . . . .1101 12 -2 E . . . . . . . . 00101 13 -3 A . . . . . . . .010101 14 -2 B . . . . . . . .110101 15 -1 A . . . . . . . .100101 16 0 B . . . . . . . .101101 17 1 A . . . . . . . .101001 18 2 B . . . . . . . .101011 19 3 A . . . . . . . .1010100 20 4 B . . . . . . . .10101010 21 3 C . . . . . . . .10101011 22 4 C . . . . . . . .10101001 23 5 C . . . . . . . .101010000 24 4 D . . . . . . . .101010001 25 3 E . . . . . . . .101010011 26 2 A . . . . . . . .101010111 27 3 B . . . . . . . .101011111 28 4 A . . . . . . . .101011011 29 3 E . . . . . . . .101011001 30 2 A . . . . . . . .101011101 31 1 E . . . . . . . .101010101 32 0 C . . . . . . . .101010101 33 -1 D . . . . . . . .101110101 34 -2 F . . . . . . . .100110101 35 -3 E . . . . . . . .110110101 36 -4 C . . . . . . . 0110110101 37 -5 D . . . . . . .01110110101 38 -6 E . . . . . . 011110110101 39 -7 A . . . . . .0111110110101 40 -6 B . . . . . .1111110110101 41 -5 A . . . . . .1011110110101 42 -6 E . . . . . .1001110110101 43 -7 A . . . . . .1101110110101 44 -8 E . . . . . 00101110110101 45 -9 A . . . . .010101110110101 46 -8 B . . . . .110101110110101 47 -7 A . . . . .100101110110101 48 -6 B . . . . .101101110110101 49 -5 A . . . . .101001110110101 50 -4 B . . . . .101011110110101 51 -3 A . . . . .101010110110101 52 -4 E . . . . .101010010110101 53 -5 A . . . . .101011010110101 54 -6 E . . . . .101001010110101 55 -7 A . . . . .101101010110101 56 -8 E . . . . .100101010110101 57 -9 A . . . . .110101010110101 58 -10 E . . . . 0010101010110101 59 -11 A . . . .01010101010110101 60 -10 B . . . .11010101010110101 61 -9 A . . . .10010101010110101 62 -8 B . . . .10110101010110101 63 -7 A . . . .10100101010110101 64 -6 B . . . .10101101010110101 65 -5 A . . . .10101001010110101 66 -4 B . . . .10101011010110101 67 -3 A . . . .10101010010110101 68 -2 B . . . .10101010110110101 69 -1 A . . . .10101010100110101 70 0 B . . . .10101010101110101 71 1 A . . . .10101010101010101 72 0 E . . . .10101010101000101 73 -1 A . . . .10101010101100101 74 -2 E . . . .10101010100100101 75 -3 A . . . .10101010110100101 76 -4 E . . . .10101010010100101 77 -5 A . . . .10101011010100101 78 -6 E . . . .10101001010100101 79 -7 A . . . .10101101010100101 80 -8 E . . . .10100101010100101 81 -9 A . . . .10110101010100101 82 -10 E . . . .10010101010100101 83 -11 A . . . .11010101010100101 84 -12 E . . . 001010101010100101 85 -13 A . . .0101010101010100101 86 -12 B . . .1101010101010100101 87 -11 A . . .1001010101010100101 88 -10 B . . .1011010101010100101 89 -9 A . . .1010010101010100101 90 -8 B . . .1010110101010100101 91 -7 A . . .1010100101010100101 92 -6 B . . .1010101101010100101 93 -5 A . . .1010101001010100101 94 -4 B . . .1010101011010100101 95 -3 A . . .1010101010010100101 96 -2 B . . .1010101010110100101 97 -1 A . . .1010101010100100101 98 0 B . . .1010101010101100101 99 1 A . . .1010101010101000101 100 2 B . . .1010101010101010101 101 1 C . . .1010101010101011101 102 2 C . . .1010101010101001101 103 3 C . . .1010101010101000101 104 4 C . . .1010101010101000001 105 3 D . . .1010101010101000011 106 2 E . . .1010101010101000111 107 1 A . . .1010101010101001111 108 2 B . . .1010101010101011111 109 3 A . . .1010101010101010111 110 2 E . . .1010101010101010011 111 1 A . . .1010101010101011011 112 0 E . . .1010101010101001011 113 -1 A . . .1010101010101101011 114 -2 E . . .1010101010100101011 115 -3 A . . .1010101010110101011 116 -4 E . . .1010101010010101011 117 -5 A . . .1010101011010101011 118 -6 E . . .1010101001010101011 119 -7 A . . .1010101101010101011 120 -8 E . . .1010100101010101011 121 -9 A . . .1010110101010101011 122 -10 E . . .1010010101010101011 123 -11 A . . .1011010101010101011 124 -12 E . . .1001010101010101011 125 -13 A . . .1101010101010101011 126 -14 E . . 00101010101010101011 127 -15 A . .010101010101010101011 128 -14 B . .110101010101010101011 129 -13 A . .100101010101010101011 130 -12 B . .101101010101010101011 131 -11 A . .101001010101010101011 132 -10 B . .101011010101010101011 133 -9 A . .101010010101010101011 134 -8 B . .101010110101010101011 135 -7 A . .101010100101010101011 136 -6 B . .101010101101010101011 137 -5 A . .101010101001010101011 138 -4 B . .101010101011010101011 139 -3 A . .101010101010010101011 140 -2 B . .101010101010110101011 141 -1 A . .101010101010100101011 142 0 B . .101010101010101101011 143 1 A . .101010101010101001011 144 2 B . .101010101010101011011 145 3 A . .101010101010101010011 146 4 B . .101010101010101010111 147 5 A . .101010101010101010101 148 4 E . .101010101010101010100 149 3 A . .101010101010101010110 150 2 E . .101010101010101010010 151 1 A . .101010101010101011010 152 0 E . .101010101010101001010 153 -1 A . .101010101010101101010 154 -2 E . .101010101010100101010 155 -3 A . .101010101010110101010 156 -4 E . .101010101010010101010 157 -5 A . .101010101011010101010 158 -6 E . .101010101001010101010 159 -7 A . .101010101101010101010 160 -8 E . .101010100101010101010 161 -9 A . .101010110101010101010 162 -10 E . .101010010101010101010 163 -11 A . .101011010101010101010 164 -12 E . .101001010101010101010 165 -13 A . .101101010101010101010 166 -14 E . .100101010101010101010 167 -15 A . .110101010101010101010 168 -16 E . 0010101010101010101010 169 -17 A .01010101010101010101010 170 -16 B .11010101010101010101010 171 -15 A .10010101010101010101010 172 -14 B .10110101010101010101010 173 -13 A .10100101010101010101010 174 -12 B .10101101010101010101010 175 -11 A .10101001010101010101010 176 -10 B .10101011010101010101010 177 -9 A .10101010010101010101010 178 -8 B .10101010110101010101010 179 -7 A .10101010100101010101010 180 -6 B .10101010101101010101010 181 -5 A .10101010101001010101010 182 -4 B .10101010101011010101010 183 -3 A .10101010101010010101010 184 -2 B .10101010101010110101010 185 -1 A .10101010101010100101010 186 0 B .10101010101010101101010 187 1 A .10101010101010101001010 188 2 B .10101010101010101011010 189 3 A .10101010101010101010010 190 4 B .10101010101010101010110 191 5 A .10101010101010101010100 192 6 B .101010101010101010101010 193 5 C .101010101010101010101011 194 6 C .101010101010101010101001 195 7 C .1010101010101010101010000 196 6 D .1010101010101010101010001 197 5 E .1010101010101010101010011 198 4 A .1010101010101010101010111 199 5 B .1010101010101010101011111 200 6 A .1010101010101010101011011 After 200 steps (201 lines): state = A. Produced 14 ones. Tape index 6, scanned [-17 .. 7].
State | Count | Execution count | First in step | ||
---|---|---|---|---|---|
on 0 | on 1 | on 0 | on 1 | ||
A | 86 | 49 | 37 | 0 | 9 |
B | 49 | 4 | 45 | 1 | 8 |
C | 15 | 6 | 9 | 4 | 2 |
D | 6 | 5 | 1 | 5 | 33 |
E | 43 | 41 | 2 | 6 | 31 |
F | 1 | 1 | 34 |