Comment: This TM produces >4.6x10^1439 ones in >2.5x10^2879 steps. Comment: This was the best known 6x2 TM until May-2010
| State | on 0 |
on 1 |
on 0 | on 1 | ||||
|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | |||||
| A | 1RB | 0LE | 1 | right | B | 0 | left | E |
| B | 1LC | 0RA | 1 | left | C | 0 | right | A |
| C | 1LD | 0RC | 1 | left | D | 0 | right | C |
| D | 1LE | 0LF | 1 | left | E | 0 | left | F |
| E | 1LA | 1LC | 1 | left | A | 1 | left | C |
| F | 1LE | 1RH | 1 | left | E | 1 | right | H |
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 2-bck-2-macro machine.
The same TM as 2-bck-2-macro machine with pure additive config-TRs.
Pushing initial machine.
Pushing macro factor 2.
Pushing BCK machine.
Pushing macro factor 2.
Steps BasSteps BasTpos Tape contents
0 0 0 (00)A>
1 13 -3 <A(10) 1010
2 16 0 0001 (01)B> 1010
3 20 4 0001 0101 (01)B>
4 31 1 0001 0101 <E(01) 0100
5 35 -3 0001 <E(10) 1101 0100
6 39 -7 <A(11) 1110 1101 0100
7 50 -4 0101 (01)B> 1110 1101 0100
8 55 -7 0101 <A(10) 1010 1101 0100
9 59 -11 <A(10) 10102 1101 0100
10 62 -8 0001 (01)B> 10102 1101 0100
11 70 0 0001 01012 (01)B> 1101 0100
12 75 -3 0001 01012 <A(10) 1001 0100
13 83 -11 0001 <A(10) 10102 1001 0100
14 90 -8 0101 (01)B> 10102 1001 0100
15 98 0 01013 (01)B> 1001 0100
16 104 4 01013 0100 (00)C> 0100
17 107 1 01013 0100 <A(11) 1100
18 115 -3 01013 <A(10) 1010 1100
19 127 -15 <A(10) 10104 1100
20 130 -12 0001 (01)B> 10104 1100
21 146 4 0001 01014 (01)B> 1100
22 151 1 0001 01014 <A(10) 1000
23 167 -15 0001 <A(10) 10104 1000
24 174 -12 0101 (01)B> 10104 1000
25 190 4 01015 (01)B> 1000
26 205 1 01015 <D(11) 0101
27 225 -19 <D(11) 10115 0101
28 233 -23 <A(10) 10116 0101
29 236 -20 0001 (01)B> 10116 0101
30 245 -23 0001 <A(10) 1010 10115 0101
31 252 -20 0101 (01)B> 1010 10115 0101
32 256 -16 01012 (01)B> 10115 0101
33 265 -19 01012 <A(10) 1010 10114 0101
34 273 -27 <A(10) 10103 10114 0101
35 276 -24 0001 (01)B> 10103 10114 0101
36 288 -12 0001 01013 (01)B> 10114 0101
37 297 -15 0001 01013 <A(10) 1010 10113 0101
38 309 -27 0001 <A(10) 10104 10113 0101
39 316 -24 0101 (01)B> 10104 10113 0101
40 332 -8 01015 (01)B> 10113 0101
41 341 -11 01015 <A(10) 1010 10112 0101
42 361 -31 <A(10) 10106 10112 0101
43 364 -28 0001 (01)B> 10106 10112 0101
44 388 -4 0001 01016 (01)B> 10112 0101
45 397 -7 0001 01016 <A(10) 1010 1011 0101
46 421 -31 0001 <A(10) 10107 1011 0101
47 428 -28 0101 (01)B> 10107 1011 0101
48 456 0 01018 (01)B> 1011 0101
49 465 -3 01018 <A(10) 1010 0101
50 497 -35 <A(10) 10109 0101
51 500 -32 0001 (01)B> 10109 0101
52 536 4 0001 01019 (01)B> 0101
53 549 1 0001 01019 <A(10) 1011
54 585 -35 0001 <A(10) 10109 1011
55 592 -32 0101 (01)B> 10109 1011
56 628 4 010110 (01)B> 1011
57 637 1 010110 <A(10) 1010
58 677 -39 <A(10) 101011
59 680 -36 0001 (01)B> 101011
60 724 8 0001 010111 (01)B>
61 735 5 0001 010111 <E(01) 0100
62 739 1 0001 010110 <E(10) 1101 0100
63 779 -39 0001 <E(10) 111010 1101 0100
64 783 -43 <A(11) 111011 1101 0100
65 794 -40 0101 (01)B> 111011 1101 0100
66 799 -43 0101 <A(10) 1010 111010 1101 0100
67 803 -47 <A(10) 10102 111010 1101 0100
68 806 -44 0001 (01)B> 10102 111010 1101 0100
69 814 -36 0001 01012 (01)B> 111010 1101 0100
70 819 -39 0001 01012 <A(10) 1010 11109 1101 0100
71 827 -47 0001 <A(10) 10103 11109 1101 0100
72 834 -44 0101 (01)B> 10103 11109 1101 0100
73 846 -32 01014 (01)B> 11109 1101 0100
74 851 -35 01014 <A(10) 1010 11108 1101 0100
75 867 -51 <A(10) 10105 11108 1101 0100
76 870 -48 0001 (01)B> 10105 11108 1101 0100
77 890 -28 0001 01015 (01)B> 11108 1101 0100
78 895 -31 0001 01015 <A(10) 1010 11107 1101 0100
79 915 -51 0001 <A(10) 10106 11107 1101 0100
80 922 -48 0101 (01)B> 10106 11107 1101 0100
81 946 -24 01017 (01)B> 11107 1101 0100
82 951 -27 01017 <A(10) 1010 11106 1101 0100
83 979 -55 <A(10) 10108 11106 1101 0100
84 982 -52 0001 (01)B> 10108 11106 1101 0100
85 1014 -20 0001 01018 (01)B> 11106 1101 0100
86 1019 -23 0001 01018 <A(10) 1010 11105 1101 0100
87 1051 -55 0001 <A(10) 10109 11105 1101 0100
88 1058 -52 0101 (01)B> 10109 11105 1101 0100
89 1094 -16 010110 (01)B> 11105 1101 0100
90 1099 -19 010110 <A(10) 1010 11104 1101 0100
91 1139 -59 <A(10) 101011 11104 1101 0100
92 1142 -56 0001 (01)B> 101011 11104 1101 0100
93 1186 -12 0001 010111 (01)B> 11104 1101 0100
94 1191 -15 0001 010111 <A(10) 1010 11103 1101 0100
95 1235 -59 0001 <A(10) 101012 11103 1101 0100
96 1242 -56 0101 (01)B> 101012 11103 1101 0100
97 1290 -8 010113 (01)B> 11103 1101 0100
98 1295 -11 010113 <A(10) 1010 11102 1101 0100
99 1347 -63 <A(10) 101014 11102 1101 0100
100 1350 -60 0001 (01)B> 101014 11102 1101 0100
101 1406 -4 0001 010114 (01)B> 11102 1101 0100
102 1411 -7 0001 010114 <A(10) 1010 1110 1101 0100
103 1467 -63 0001 <A(10) 101015 1110 1101 0100
104 1474 -60 0101 (01)B> 101015 1110 1101 0100
105 1534 0 010116 (01)B> 1110 1101 0100
106 1539 -3 010116 <A(10) 1010 1101 0100
107 1603 -67 <A(10) 101017 1101 0100
108 1606 -64 0001 (01)B> 101017 1101 0100
109 1674 4 0001 010117 (01)B> 1101 0100
110 1679 1 0001 010117 <A(10) 1001 0100
111 1747 -67 0001 <A(10) 101017 1001 0100
112 1754 -64 0101 (01)B> 101017 1001 0100
113 1822 4 010118 (01)B> 1001 0100
114 1828 8 010118 0100 (00)C> 0100
115 1831 5 010118 0100 <A(11) 1100
116 1839 1 010118 <A(10) 1010 1100
117 1911 -71 <A(10) 101019 1100
118 1914 -68 0001 (01)B> 101019 1100
119 1990 8 0001 010119 (01)B> 1100
120 1995 5 0001 010119 <A(10) 1000
121 2071 -71 0001 <A(10) 101019 1000
122 2078 -68 0101 (01)B> 101019 1000
123 2154 8 010120 (01)B> 1000
124 2169 5 010120 <D(11) 0101
125 2249 -75 <D(11) 101120 0101
126 2257 -79 <A(10) 101121 0101
127 2260 -76 0001 (01)B> 101121 0101
128 2269 -79 0001 <A(10) 1010 101120 0101
129 2276 -76 0101 (01)B> 1010 101120 0101
130 2280 -72 01012 (01)B> 101120 0101
131 2289 -75 01012 <A(10) 1010 101119 0101
132 2297 -83 <A(10) 10103 101119 0101
133 2300 -80 0001 (01)B> 10103 101119 0101
134 2312 -68 0001 01013 (01)B> 101119 0101
135 2321 -71 0001 01013 <A(10) 1010 101118 0101
136 2333 -83 0001 <A(10) 10104 101118 0101
137 2340 -80 0101 (01)B> 10104 101118 0101
138 2356 -64 01015 (01)B> 101118 0101
139 2365 -67 01015 <A(10) 1010 101117 0101
140 2385 -87 <A(10) 10106 101117 0101
141 2388 -84 0001 (01)B> 10106 101117 0101
142 2412 -60 0001 01016 (01)B> 101117 0101
143 2421 -63 0001 01016 <A(10) 1010 101116 0101
144 2445 -87 0001 <A(10) 10107 101116 0101
145 2452 -84 0101 (01)B> 10107 101116 0101
146 2480 -56 01018 (01)B> 101116 0101
147 2489 -59 01018 <A(10) 1010 101115 0101
148 2521 -91 <A(10) 10109 101115 0101
149 2524 -88 0001 (01)B> 10109 101115 0101
150 2560 -52 0001 01019 (01)B> 101115 0101
151 2569 -55 0001 01019 <A(10) 1010 101114 0101
152 2605 -91 0001 <A(10) 101010 101114 0101
153 2612 -88 0101 (01)B> 101010 101114 0101
154 2652 -48 010111 (01)B> 101114 0101
155 2661 -51 010111 <A(10) 1010 101113 0101
156 2705 -95 <A(10) 101012 101113 0101
157 2708 -92 0001 (01)B> 101012 101113 0101
158 2756 -44 0001 010112 (01)B> 101113 0101
159 2765 -47 0001 010112 <A(10) 1010 101112 0101
160 2813 -95 0001 <A(10) 101013 101112 0101
161 2820 -92 0101 (01)B> 101013 101112 0101
162 2872 -40 010114 (01)B> 101112 0101
163 2881 -43 010114 <A(10) 1010 101111 0101
164 2937 -99 <A(10) 101015 101111 0101
165 2940 -96 0001 (01)B> 101015 101111 0101
166 3000 -36 0001 010115 (01)B> 101111 0101
167 3009 -39 0001 010115 <A(10) 1010 101110 0101
168 3069 -99 0001 <A(10) 101016 101110 0101
169 3076 -96 0101 (01)B> 101016 101110 0101
170 3140 -32 010117 (01)B> 101110 0101
171 3149 -35 010117 <A(10) 1010 10119 0101
172 3217 -103 <A(10) 101018 10119 0101
173 3220 -100 0001 (01)B> 101018 10119 0101
174 3292 -28 0001 010118 (01)B> 10119 0101
175 3301 -31 0001 010118 <A(10) 1010 10118 0101
176 3373 -103 0001 <A(10) 101019 10118 0101
177 3380 -100 0101 (01)B> 101019 10118 0101
178 3456 -24 010120 (01)B> 10118 0101
179 3465 -27 010120 <A(10) 1010 10117 0101
180 3545 -107 <A(10) 101021 10117 0101
181 3548 -104 0001 (01)B> 101021 10117 0101
182 3632 -20 0001 010121 (01)B> 10117 0101
183 3641 -23 0001 010121 <A(10) 1010 10116 0101
184 3725 -107 0001 <A(10) 101022 10116 0101
185 3732 -104 0101 (01)B> 101022 10116 0101
186 3820 -16 010123 (01)B> 10116 0101
187 3829 -19 010123 <A(10) 1010 10115 0101
188 3921 -111 <A(10) 101024 10115 0101
189 3924 -108 0001 (01)B> 101024 10115 0101
190 4020 -12 0001 010124 (01)B> 10115 0101
191 4029 -15 0001 010124 <A(10) 1010 10114 0101
192 4125 -111 0001 <A(10) 101025 10114 0101
193 4132 -108 0101 (01)B> 101025 10114 0101
194 4232 -8 010126 (01)B> 10114 0101
195 4241 -11 010126 <A(10) 1010 10113 0101
196 4345 -115 <A(10) 101027 10113 0101
197 4348 -112 0001 (01)B> 101027 10113 0101
198 4456 -4 0001 010127 (01)B> 10113 0101
199 4465 -7 0001 010127 <A(10) 1010 10112 0101
200 4573 -115 0001 <A(10) 101028 10112 0101
Lines: 201
Top steps: 200
Macro steps: 200
Basic steps: 4573
Tape index: -115
ones: 66
log10(ones ): 1.820
log10(steps ): 3.660
Input to awk program:
gohalt 1
T 6-state 2-symbol #b (T.J. & S. Ligocki)
: >4.6x10^1439 >2.5x10^2879
C This was the best known 6x2 TM until May-2010
5T 1RB 0LE 1LC 0RA 1LD 0RC 1LE 0LF 1LA 1LC 1LE 1RH
L 18
M 201
pref sim
machv Lig62_b just simple
machv Lig62_b-r with repetitions reduced
machv Lig62_b-1 with tape symbol exponents
machv Lig62_b-m as 2-bck-2-macro machine
machv Lig62_b-a as 2-bck-2-macro machine with pure additive config-TRs
iam Lig62_b-m
mtype 2 0 2
mmtyp 1
r 1
H 1
mac 0
E 2
sympr
HM 1
date Tue Jul 6 22:14:23 CEST 2010
edate Tue Jul 6 22:14:23 CEST 2010
bnspeed 1
short 7
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $
$Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $
$Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $
$Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $
$Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $
$Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $
bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:14:23 CEST 2010