Comment: This TM produces >4.6x10^1439 ones in >2.5x10^2879 steps. Comment: This was the best known 6x2 TM until May-2010
State | on 0 |
on 1 |
on 0 | on 1 | ||||
---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | |||||
A | 1RB | 0LE | 1 | right | B | 0 | left | E |
B | 1LC | 0RA | 1 | left | C | 0 | right | A |
C | 1LD | 0RC | 1 | left | D | 0 | right | C |
D | 1LE | 0LF | 1 | left | E | 0 | left | F |
E | 1LA | 1LC | 1 | left | A | 1 | left | C |
F | 1LE | 1RH | 1 | left | E | 1 | right | H |
The same TM just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. Simulation is done as 2-bck-2-macro machine. The same TM as 2-bck-2-macro machine with pure additive config-TRs. Pushing initial machine. Pushing macro factor 2. Pushing BCK machine. Pushing macro factor 2. Steps BasSteps BasTpos Tape contents 0 0 0 (00)A> 1 13 -3 <A(10) 1010 2 16 0 0001 (01)B> 1010 3 20 4 0001 0101 (01)B> 4 31 1 0001 0101 <E(01) 0100 5 35 -3 0001 <E(10) 1101 0100 6 39 -7 <A(11) 1110 1101 0100 7 50 -4 0101 (01)B> 1110 1101 0100 8 55 -7 0101 <A(10) 1010 1101 0100 9 59 -11 <A(10) 10102 1101 0100 10 62 -8 0001 (01)B> 10102 1101 0100 11 70 0 0001 01012 (01)B> 1101 0100 12 75 -3 0001 01012 <A(10) 1001 0100 13 83 -11 0001 <A(10) 10102 1001 0100 14 90 -8 0101 (01)B> 10102 1001 0100 15 98 0 01013 (01)B> 1001 0100 16 104 4 01013 0100 (00)C> 0100 17 107 1 01013 0100 <A(11) 1100 18 115 -3 01013 <A(10) 1010 1100 19 127 -15 <A(10) 10104 1100 20 130 -12 0001 (01)B> 10104 1100 21 146 4 0001 01014 (01)B> 1100 22 151 1 0001 01014 <A(10) 1000 23 167 -15 0001 <A(10) 10104 1000 24 174 -12 0101 (01)B> 10104 1000 25 190 4 01015 (01)B> 1000 26 205 1 01015 <D(11) 0101 27 225 -19 <D(11) 10115 0101 28 233 -23 <A(10) 10116 0101 29 236 -20 0001 (01)B> 10116 0101 30 245 -23 0001 <A(10) 1010 10115 0101 31 252 -20 0101 (01)B> 1010 10115 0101 32 256 -16 01012 (01)B> 10115 0101 33 265 -19 01012 <A(10) 1010 10114 0101 34 273 -27 <A(10) 10103 10114 0101 35 276 -24 0001 (01)B> 10103 10114 0101 36 288 -12 0001 01013 (01)B> 10114 0101 37 297 -15 0001 01013 <A(10) 1010 10113 0101 38 309 -27 0001 <A(10) 10104 10113 0101 39 316 -24 0101 (01)B> 10104 10113 0101 40 332 -8 01015 (01)B> 10113 0101 41 341 -11 01015 <A(10) 1010 10112 0101 42 361 -31 <A(10) 10106 10112 0101 43 364 -28 0001 (01)B> 10106 10112 0101 44 388 -4 0001 01016 (01)B> 10112 0101 45 397 -7 0001 01016 <A(10) 1010 1011 0101 46 421 -31 0001 <A(10) 10107 1011 0101 47 428 -28 0101 (01)B> 10107 1011 0101 48 456 0 01018 (01)B> 1011 0101 49 465 -3 01018 <A(10) 1010 0101 50 497 -35 <A(10) 10109 0101 51 500 -32 0001 (01)B> 10109 0101 52 536 4 0001 01019 (01)B> 0101 53 549 1 0001 01019 <A(10) 1011 54 585 -35 0001 <A(10) 10109 1011 55 592 -32 0101 (01)B> 10109 1011 56 628 4 010110 (01)B> 1011 57 637 1 010110 <A(10) 1010 58 677 -39 <A(10) 101011 59 680 -36 0001 (01)B> 101011 60 724 8 0001 010111 (01)B> 61 735 5 0001 010111 <E(01) 0100 62 739 1 0001 010110 <E(10) 1101 0100 63 779 -39 0001 <E(10) 111010 1101 0100 64 783 -43 <A(11) 111011 1101 0100 65 794 -40 0101 (01)B> 111011 1101 0100 66 799 -43 0101 <A(10) 1010 111010 1101 0100 67 803 -47 <A(10) 10102 111010 1101 0100 68 806 -44 0001 (01)B> 10102 111010 1101 0100 69 814 -36 0001 01012 (01)B> 111010 1101 0100 70 819 -39 0001 01012 <A(10) 1010 11109 1101 0100 71 827 -47 0001 <A(10) 10103 11109 1101 0100 72 834 -44 0101 (01)B> 10103 11109 1101 0100 73 846 -32 01014 (01)B> 11109 1101 0100 74 851 -35 01014 <A(10) 1010 11108 1101 0100 75 867 -51 <A(10) 10105 11108 1101 0100 76 870 -48 0001 (01)B> 10105 11108 1101 0100 77 890 -28 0001 01015 (01)B> 11108 1101 0100 78 895 -31 0001 01015 <A(10) 1010 11107 1101 0100 79 915 -51 0001 <A(10) 10106 11107 1101 0100 80 922 -48 0101 (01)B> 10106 11107 1101 0100 81 946 -24 01017 (01)B> 11107 1101 0100 82 951 -27 01017 <A(10) 1010 11106 1101 0100 83 979 -55 <A(10) 10108 11106 1101 0100 84 982 -52 0001 (01)B> 10108 11106 1101 0100 85 1014 -20 0001 01018 (01)B> 11106 1101 0100 86 1019 -23 0001 01018 <A(10) 1010 11105 1101 0100 87 1051 -55 0001 <A(10) 10109 11105 1101 0100 88 1058 -52 0101 (01)B> 10109 11105 1101 0100 89 1094 -16 010110 (01)B> 11105 1101 0100 90 1099 -19 010110 <A(10) 1010 11104 1101 0100 91 1139 -59 <A(10) 101011 11104 1101 0100 92 1142 -56 0001 (01)B> 101011 11104 1101 0100 93 1186 -12 0001 010111 (01)B> 11104 1101 0100 94 1191 -15 0001 010111 <A(10) 1010 11103 1101 0100 95 1235 -59 0001 <A(10) 101012 11103 1101 0100 96 1242 -56 0101 (01)B> 101012 11103 1101 0100 97 1290 -8 010113 (01)B> 11103 1101 0100 98 1295 -11 010113 <A(10) 1010 11102 1101 0100 99 1347 -63 <A(10) 101014 11102 1101 0100 100 1350 -60 0001 (01)B> 101014 11102 1101 0100 101 1406 -4 0001 010114 (01)B> 11102 1101 0100 102 1411 -7 0001 010114 <A(10) 1010 1110 1101 0100 103 1467 -63 0001 <A(10) 101015 1110 1101 0100 104 1474 -60 0101 (01)B> 101015 1110 1101 0100 105 1534 0 010116 (01)B> 1110 1101 0100 106 1539 -3 010116 <A(10) 1010 1101 0100 107 1603 -67 <A(10) 101017 1101 0100 108 1606 -64 0001 (01)B> 101017 1101 0100 109 1674 4 0001 010117 (01)B> 1101 0100 110 1679 1 0001 010117 <A(10) 1001 0100 111 1747 -67 0001 <A(10) 101017 1001 0100 112 1754 -64 0101 (01)B> 101017 1001 0100 113 1822 4 010118 (01)B> 1001 0100 114 1828 8 010118 0100 (00)C> 0100 115 1831 5 010118 0100 <A(11) 1100 116 1839 1 010118 <A(10) 1010 1100 117 1911 -71 <A(10) 101019 1100 118 1914 -68 0001 (01)B> 101019 1100 119 1990 8 0001 010119 (01)B> 1100 120 1995 5 0001 010119 <A(10) 1000 121 2071 -71 0001 <A(10) 101019 1000 122 2078 -68 0101 (01)B> 101019 1000 123 2154 8 010120 (01)B> 1000 124 2169 5 010120 <D(11) 0101 125 2249 -75 <D(11) 101120 0101 126 2257 -79 <A(10) 101121 0101 127 2260 -76 0001 (01)B> 101121 0101 128 2269 -79 0001 <A(10) 1010 101120 0101 129 2276 -76 0101 (01)B> 1010 101120 0101 130 2280 -72 01012 (01)B> 101120 0101 131 2289 -75 01012 <A(10) 1010 101119 0101 132 2297 -83 <A(10) 10103 101119 0101 133 2300 -80 0001 (01)B> 10103 101119 0101 134 2312 -68 0001 01013 (01)B> 101119 0101 135 2321 -71 0001 01013 <A(10) 1010 101118 0101 136 2333 -83 0001 <A(10) 10104 101118 0101 137 2340 -80 0101 (01)B> 10104 101118 0101 138 2356 -64 01015 (01)B> 101118 0101 139 2365 -67 01015 <A(10) 1010 101117 0101 140 2385 -87 <A(10) 10106 101117 0101 141 2388 -84 0001 (01)B> 10106 101117 0101 142 2412 -60 0001 01016 (01)B> 101117 0101 143 2421 -63 0001 01016 <A(10) 1010 101116 0101 144 2445 -87 0001 <A(10) 10107 101116 0101 145 2452 -84 0101 (01)B> 10107 101116 0101 146 2480 -56 01018 (01)B> 101116 0101 147 2489 -59 01018 <A(10) 1010 101115 0101 148 2521 -91 <A(10) 10109 101115 0101 149 2524 -88 0001 (01)B> 10109 101115 0101 150 2560 -52 0001 01019 (01)B> 101115 0101 151 2569 -55 0001 01019 <A(10) 1010 101114 0101 152 2605 -91 0001 <A(10) 101010 101114 0101 153 2612 -88 0101 (01)B> 101010 101114 0101 154 2652 -48 010111 (01)B> 101114 0101 155 2661 -51 010111 <A(10) 1010 101113 0101 156 2705 -95 <A(10) 101012 101113 0101 157 2708 -92 0001 (01)B> 101012 101113 0101 158 2756 -44 0001 010112 (01)B> 101113 0101 159 2765 -47 0001 010112 <A(10) 1010 101112 0101 160 2813 -95 0001 <A(10) 101013 101112 0101 161 2820 -92 0101 (01)B> 101013 101112 0101 162 2872 -40 010114 (01)B> 101112 0101 163 2881 -43 010114 <A(10) 1010 101111 0101 164 2937 -99 <A(10) 101015 101111 0101 165 2940 -96 0001 (01)B> 101015 101111 0101 166 3000 -36 0001 010115 (01)B> 101111 0101 167 3009 -39 0001 010115 <A(10) 1010 101110 0101 168 3069 -99 0001 <A(10) 101016 101110 0101 169 3076 -96 0101 (01)B> 101016 101110 0101 170 3140 -32 010117 (01)B> 101110 0101 171 3149 -35 010117 <A(10) 1010 10119 0101 172 3217 -103 <A(10) 101018 10119 0101 173 3220 -100 0001 (01)B> 101018 10119 0101 174 3292 -28 0001 010118 (01)B> 10119 0101 175 3301 -31 0001 010118 <A(10) 1010 10118 0101 176 3373 -103 0001 <A(10) 101019 10118 0101 177 3380 -100 0101 (01)B> 101019 10118 0101 178 3456 -24 010120 (01)B> 10118 0101 179 3465 -27 010120 <A(10) 1010 10117 0101 180 3545 -107 <A(10) 101021 10117 0101 181 3548 -104 0001 (01)B> 101021 10117 0101 182 3632 -20 0001 010121 (01)B> 10117 0101 183 3641 -23 0001 010121 <A(10) 1010 10116 0101 184 3725 -107 0001 <A(10) 101022 10116 0101 185 3732 -104 0101 (01)B> 101022 10116 0101 186 3820 -16 010123 (01)B> 10116 0101 187 3829 -19 010123 <A(10) 1010 10115 0101 188 3921 -111 <A(10) 101024 10115 0101 189 3924 -108 0001 (01)B> 101024 10115 0101 190 4020 -12 0001 010124 (01)B> 10115 0101 191 4029 -15 0001 010124 <A(10) 1010 10114 0101 192 4125 -111 0001 <A(10) 101025 10114 0101 193 4132 -108 0101 (01)B> 101025 10114 0101 194 4232 -8 010126 (01)B> 10114 0101 195 4241 -11 010126 <A(10) 1010 10113 0101 196 4345 -115 <A(10) 101027 10113 0101 197 4348 -112 0001 (01)B> 101027 10113 0101 198 4456 -4 0001 010127 (01)B> 10113 0101 199 4465 -7 0001 010127 <A(10) 1010 10112 0101 200 4573 -115 0001 <A(10) 101028 10112 0101 Lines: 201 Top steps: 200 Macro steps: 200 Basic steps: 4573 Tape index: -115 ones: 66 log10(ones ): 1.820 log10(steps ): 3.660
Input to awk program: gohalt 1 T 6-state 2-symbol #b (T.J. & S. Ligocki) : >4.6x10^1439 >2.5x10^2879 C This was the best known 6x2 TM until May-2010 5T 1RB 0LE 1LC 0RA 1LD 0RC 1LE 0LF 1LA 1LC 1LE 1RH L 18 M 201 pref sim machv Lig62_b just simple machv Lig62_b-r with repetitions reduced machv Lig62_b-1 with tape symbol exponents machv Lig62_b-m as 2-bck-2-macro machine machv Lig62_b-a as 2-bck-2-macro machine with pure additive config-TRs iam Lig62_b-m mtype 2 0 2 mmtyp 1 r 1 H 1 mac 0 E 2 sympr HM 1 date Tue Jul 6 22:14:23 CEST 2010 edate Tue Jul 6 22:14:23 CEST 2010 bnspeed 1 short 7Start: Tue Jul 6 22:14:23 CEST 2010
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;