Comment: This TM produces >1.383x10^7036 nonzeros in >1.025x10^14072 steps. Comment: This is the currently best known 4x3 TM Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | |||||||
A | 1RB | 1RH | 2RC | 1 | right | B | 1 | right | H | 2 | right | C |
B | 2LC | 2RD | 0LC | 2 | left | C | 2 | right | D | 0 | left | C |
C | 1RA | 2RB | 0LB | 1 | right | A | 2 | right | B | 0 | left | B |
D | 1LB | 0LD | 2RC | 1 | left | B | 0 | left | D | 2 | right | C |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 2-bck-macro machine. The same TM as 2-bck-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <C 2 3 1 2 B> 2 4 0 2 <C 5 -1 <B 6 -2 <C 2 7 -1 1 A> 2 8 0 1 2 C> 9 1 1 2 1 A> 10 2 1 2 1 1 B> 11 1 1 2 1 1 <C 2 12 2 1 2 1 2 B> 2 13 1 1 2 1 2 <C 14 0 1 2 1 <B 15 1 1 2 2 D> 16 0 1 2 2 <B 1 17 -1 1 2 <C 0 1 18 -2 1 <B 0 0 1 19 -1 2 D> 0 0 1 20 -2 2 <B 1 0 1 21 -3 <C 0 1 0 1 22 -2 1 A> 0 1 0 1 23 -1 1 1 B> 1 0 1 24 0 1 1 2 D> 0 1 25 -1 1 1 2 <B 1 1 26 -2 1 1 <C 0 1 1 27 -1 1 2 B> 0 1 1 28 -2 1 2 <C 2 1 1 29 -3 1 <B 0 2 1 1 30 -2 2 D> 0 2 1 1 31 -3 2 <B 1 2 1 1 32 -4 <C 0 1 2 1 1 33 -3 1 A> 0 1 2 1 1 34 -2 1 1 B> 1 2 1 1 35 -1 1 1 2 D> 2 1 1 36 0 1 1 2 2 C> 1 1 37 1 1 1 23 B> 1 38 2 1 1 24 D> 39 1 1 1 24 <B 1 40 0 1 1 23 <C 0 1 41 -1 1 1 2 2 <B 0 0 1 42 -2 1 1 2 <C 03 1 43 -3 1 1 <B 04 1 44 -2 1 2 D> 04 1 45 -3 1 2 <B 1 03 1 46 -4 1 <C 0 1 03 1 47 -3 2 B> 0 1 03 1 48 -4 2 <C 2 1 03 1 49 -5 <B 0 2 1 03 1 50 -6 <C 2 0 2 1 03 1 51 -5 1 A> 2 0 2 1 03 1 52 -4 1 2 C> 0 2 1 03 1 53 -3 1 2 1 A> 2 1 03 1 54 -2 1 2 1 2 C> 1 03 1 55 -1 1 2 1 2 2 B> 03 1 56 -2 1 2 1 2 2 <C 2 0 0 1 57 -3 1 2 1 2 <B 0 2 0 0 1 58 -4 1 2 1 <C 0 0 2 0 0 1 59 -3 1 2 2 B> 0 0 2 0 0 1 60 -4 1 2 2 <C 2 0 2 0 0 1 61 -5 1 2 <B 0 2 0 2 0 0 1 62 -6 1 <C 0 0 2 0 2 0 0 1 63 -5 2 B> 0 0 2 0 2 0 0 1 64 -6 2 <C 2 0 2 0 2 0 0 1 65 -7 <B 0 2 0 2 0 2 0 0 1 66 -8 <C 2 0 2 0 2 0 2 0 0 1 67 -7 1 A> 2 0 2 0 2 0 2 0 0 1 68 -6 1 2 C> 0 2 0 2 0 2 0 0 1 69 -5 1 2 1 A> 2 0 2 0 2 0 0 1 70 -4 1 2 1 2 C> 0 2 0 2 0 0 1 71 -3 1 2 1 2 1 A> 2 0 2 0 0 1 72 -2 1 2 1 2 1 2 C> 0 2 0 0 1 73 -1 1 2 1 2 1 2 1 A> 2 0 0 1 74 0 1 2 1 2 1 2 1 2 C> 0 0 1 75 1 1 2 1 2 1 2 1 2 1 A> 0 1 76 2 1 2 1 2 1 2 1 2 1 1 B> 1 77 3 1 2 1 2 1 2 1 2 1 1 2 D> 78 2 1 2 1 2 1 2 1 2 1 1 2 <B 1 79 1 1 2 1 2 1 2 1 2 1 1 <C 0 1 80 2 1 2 1 2 1 2 1 2 1 2 B> 0 1 81 1 1 2 1 2 1 2 1 2 1 2 <C 2 1 82 0 1 2 1 2 1 2 1 2 1 <B 0 2 1 83 1 1 2 1 2 1 2 1 2 2 D> 0 2 1 84 0 1 2 1 2 1 2 1 2 2 <B 1 2 1 85 -1 1 2 1 2 1 2 1 2 <C 0 1 2 1 86 -2 1 2 1 2 1 2 1 <B 0 0 1 2 1 87 -1 1 2 1 2 1 2 2 D> 0 0 1 2 1 88 -2 1 2 1 2 1 2 2 <B 1 0 1 2 1 89 -3 1 2 1 2 1 2 <C 0 1 0 1 2 1 90 -4 1 2 1 2 1 <B 0 0 1 0 1 2 1 91 -3 1 2 1 2 2 D> 0 0 1 0 1 2 1 92 -4 1 2 1 2 2 <B 1 0 1 0 1 2 1 93 -5 1 2 1 2 <C 0 1 0 1 0 1 2 1 94 -6 1 2 1 <B 0 0 1 0 1 0 1 2 1 95 -5 1 2 2 D> 0 0 1 0 1 0 1 2 1 96 -6 1 2 2 <B 1 0 1 0 1 0 1 2 1 97 -7 1 2 <C 0 1 0 1 0 1 0 1 2 1 98 -8 1 <B 0 0 1 0 1 0 1 0 1 2 1 99 -7 2 D> 0 0 1 0 1 0 1 0 1 2 1 100 -8 2 <B 1 0 1 0 1 0 1 0 1 2 1 101 -9 <C 0 1 0 1 0 1 0 1 0 1 2 1 102 -8 1 A> 0 1 0 1 0 1 0 1 0 1 2 1 103 -7 1 1 B> 1 0 1 0 1 0 1 0 1 2 1 104 -6 1 1 2 D> 0 1 0 1 0 1 0 1 2 1 105 -7 1 1 2 <B 1 1 0 1 0 1 0 1 2 1 106 -8 1 1 <C 0 1 1 0 1 0 1 0 1 2 1 107 -7 1 2 B> 0 1 1 0 1 0 1 0 1 2 1 108 -8 1 2 <C 2 1 1 0 1 0 1 0 1 2 1 109 -9 1 <B 0 2 1 1 0 1 0 1 0 1 2 1 110 -8 2 D> 0 2 1 1 0 1 0 1 0 1 2 1 111 -9 2 <B 1 2 1 1 0 1 0 1 0 1 2 1 112 -10 <C 0 1 2 1 1 0 1 0 1 0 1 2 1 113 -9 1 A> 0 1 2 1 1 0 1 0 1 0 1 2 1 114 -8 1 1 B> 1 2 1 1 0 1 0 1 0 1 2 1 115 -7 1 1 2 D> 2 1 1 0 1 0 1 0 1 2 1 116 -6 1 1 2 2 C> 1 1 0 1 0 1 0 1 2 1 117 -5 1 1 23 B> 1 0 1 0 1 0 1 2 1 118 -4 1 1 24 D> 0 1 0 1 0 1 2 1 119 -5 1 1 24 <B 1 1 0 1 0 1 2 1 120 -6 1 1 23 <C 0 1 1 0 1 0 1 2 1 121 -7 1 1 2 2 <B 0 0 1 1 0 1 0 1 2 1 122 -8 1 1 2 <C 03 1 1 0 1 0 1 2 1 123 -9 1 1 <B 04 1 1 0 1 0 1 2 1 124 -8 1 2 D> 04 1 1 0 1 0 1 2 1 125 -9 1 2 <B 1 03 1 1 0 1 0 1 2 1 126 -10 1 <C 0 1 03 1 1 0 1 0 1 2 1 127 -9 2 B> 0 1 03 1 1 0 1 0 1 2 1 128 -10 2 <C 2 1 03 1 1 0 1 0 1 2 1 129 -11 <B 0 2 1 03 1 1 0 1 0 1 2 1 130 -12 <C 2 0 2 1 03 1 1 0 1 0 1 2 1 131 -11 1 A> 2 0 2 1 03 1 1 0 1 0 1 2 1 132 -10 1 2 C> 0 2 1 03 1 1 0 1 0 1 2 1 133 -9 1 2 1 A> 2 1 03 1 1 0 1 0 1 2 1 134 -8 1 2 1 2 C> 1 03 1 1 0 1 0 1 2 1 135 -7 1 2 1 2 2 B> 03 1 1 0 1 0 1 2 1 136 -8 1 2 1 2 2 <C 2 0 0 1 1 0 1 0 1 2 1 137 -9 1 2 1 2 <B 0 2 0 0 1 1 0 1 0 1 2 1 138 -10 1 2 1 <C 0 0 2 0 0 1 1 0 1 0 1 2 1 139 -9 1 2 2 B> 0 0 2 0 0 1 1 0 1 0 1 2 1 140 -10 1 2 2 <C 2 0 2 0 0 1 1 0 1 0 1 2 1 141 -11 1 2 <B 0 2 0 2 0 0 1 1 0 1 0 1 2 1 142 -12 1 <C 0 0 2 0 2 0 0 1 1 0 1 0 1 2 1 143 -11 2 B> 0 0 2 0 2 0 0 1 1 0 1 0 1 2 1 144 -12 2 <C 2 0 2 0 2 0 0 1 1 0 1 0 1 2 1 145 -13 <B 0 2 0 2 0 2 0 0 1 1 0 1 0 1 2 1 146 -14 <C 2 0 2 0 2 0 2 0 0 1 1 0 1 0 1 2 1 147 -13 1 A> 2 0 2 0 2 0 2 0 0 1 1 0 1 0 1 2 1 148 -12 1 2 C> 0 2 0 2 0 2 0 0 1 1 0 1 0 1 2 1 149 -11 1 2 1 A> 2 0 2 0 2 0 0 1 1 0 1 0 1 2 1 150 -10 1 2 1 2 C> 0 2 0 2 0 0 1 1 0 1 0 1 2 1 151 -9 1 2 1 2 1 A> 2 0 2 0 0 1 1 0 1 0 1 2 1 152 -8 1 2 1 2 1 2 C> 0 2 0 0 1 1 0 1 0 1 2 1 153 -7 1 2 1 2 1 2 1 A> 2 0 0 1 1 0 1 0 1 2 1 154 -6 1 2 1 2 1 2 1 2 C> 0 0 1 1 0 1 0 1 2 1 155 -5 1 2 1 2 1 2 1 2 1 A> 0 1 1 0 1 0 1 2 1 156 -4 1 2 1 2 1 2 1 2 1 1 B> 1 1 0 1 0 1 2 1 157 -3 1 2 1 2 1 2 1 2 1 1 2 D> 1 0 1 0 1 2 1 158 -4 1 2 1 2 1 2 1 2 1 1 2 <D 0 0 1 0 1 2 1 159 -3 1 2 1 2 1 2 1 2 1 1 2 C> 0 0 1 0 1 2 1 160 -2 1 2 1 2 1 2 1 2 1 1 2 1 A> 0 1 0 1 2 1 161 -1 1 2 1 2 1 2 1 2 1 1 2 1 1 B> 1 0 1 2 1 162 0 1 2 1 2 1 2 1 2 1 1 2 1 1 2 D> 0 1 2 1 163 -1 1 2 1 2 1 2 1 2 1 1 2 1 1 2 <B 1 1 2 1 164 -2 1 2 1 2 1 2 1 2 1 1 2 1 1 <C 0 1 1 2 1 165 -1 1 2 1 2 1 2 1 2 1 1 2 1 2 B> 0 1 1 2 1 166 -2 1 2 1 2 1 2 1 2 1 1 2 1 2 <C 2 1 1 2 1 167 -3 1 2 1 2 1 2 1 2 1 1 2 1 <B 0 2 1 1 2 1 168 -2 1 2 1 2 1 2 1 2 1 1 2 2 D> 0 2 1 1 2 1 169 -3 1 2 1 2 1 2 1 2 1 1 2 2 <B 1 2 1 1 2 1 170 -4 1 2 1 2 1 2 1 2 1 1 2 <C 0 1 2 1 1 2 1 171 -5 1 2 1 2 1 2 1 2 1 1 <B 0 0 1 2 1 1 2 1 172 -4 1 2 1 2 1 2 1 2 1 2 D> 0 0 1 2 1 1 2 1 173 -5 1 2 1 2 1 2 1 2 1 2 <B 1 0 1 2 1 1 2 1 174 -6 1 2 1 2 1 2 1 2 1 <C 0 1 0 1 2 1 1 2 1 175 -5 1 2 1 2 1 2 1 2 2 B> 0 1 0 1 2 1 1 2 1 176 -6 1 2 1 2 1 2 1 2 2 <C 2 1 0 1 2 1 1 2 1 177 -7 1 2 1 2 1 2 1 2 <B 0 2 1 0 1 2 1 1 2 1 178 -8 1 2 1 2 1 2 1 <C 0 0 2 1 0 1 2 1 1 2 1 179 -7 1 2 1 2 1 2 2 B> 0 0 2 1 0 1 2 1 1 2 1 180 -8 1 2 1 2 1 2 2 <C 2 0 2 1 0 1 2 1 1 2 1 181 -9 1 2 1 2 1 2 <B 0 2 0 2 1 0 1 2 1 1 2 1 182 -10 1 2 1 2 1 <C 0 0 2 0 2 1 0 1 2 1 1 2 1 183 -9 1 2 1 2 2 B> 0 0 2 0 2 1 0 1 2 1 1 2 1 184 -10 1 2 1 2 2 <C 2 0 2 0 2 1 0 1 2 1 1 2 1 185 -11 1 2 1 2 <B 0 2 0 2 0 2 1 0 1 2 1 1 2 1 186 -12 1 2 1 <C 0 0 2 0 2 0 2 1 0 1 2 1 1 2 1 187 -11 1 2 2 B> 0 0 2 0 2 0 2 1 0 1 2 1 1 2 1 188 -12 1 2 2 <C 2 0 2 0 2 0 2 1 0 1 2 1 1 2 1 189 -13 1 2 <B 0 2 0 2 0 2 0 2 1 0 1 2 1 1 2 1 190 -14 1 <C 0 0 2 0 2 0 2 0 2 1 0 1 2 1 1 2 1 191 -13 2 B> 0 0 2 0 2 0 2 0 2 1 0 1 2 1 1 2 1 192 -14 2 <C 2 0 2 0 2 0 2 0 2 1 0 1 2 1 1 2 1 193 -15 <B 0 2 0 2 0 2 0 2 0 2 1 0 1 2 1 1 2 1 194 -16 <C 2 0 2 0 2 0 2 0 2 0 2 1 0 1 2 1 1 2 1 195 -15 1 A> 2 0 2 0 2 0 2 0 2 0 2 1 0 1 2 1 1 2 1 196 -14 1 2 C> 0 2 0 2 0 2 0 2 0 2 1 0 1 2 1 1 2 1 197 -13 1 2 1 A> 2 0 2 0 2 0 2 0 2 1 0 1 2 1 1 2 1 198 -12 1 2 1 2 C> 0 2 0 2 0 2 0 2 1 0 1 2 1 1 2 1 199 -11 1 2 1 2 1 A> 2 0 2 0 2 0 2 1 0 1 2 1 1 2 1 200 -10 1 2 1 2 1 2 C> 0 2 0 2 0 2 1 0 1 2 1 1 2 1 After 200 steps (201 lines): state = C. Produced 16 nonzeros. Tape index -10, scanned [-16 .. 3].
State | Count | Execution count | First in step | ||||
---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
A | 25 | 9 | 16 | 0 | 7 | ||
B | 78 | 25 | 22 | 31 | 1 | 14 | 3 |
C | 74 | 24 | 21 | 29 | 6 | 2 | 4 |
D | 23 | 19 | 1 | 3 | 15 | 157 | 35 |