Comment: This TM produces >4.0x10^3860 nonzeros in >3.9x10^7721 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | |||||||
A | 1RB | 1LA | 1RD | 1 | right | B | 1 | left | A | 1 | right | D |
B | 2LC | 0RA | 1LB | 2 | left | C | 0 | right | A | 1 | left | B |
C | 2LA | 0LB | 0RD | 2 | left | A | 0 | left | B | 0 | right | D |
D | 2RC | 1RH | 0LC | 2 | right | C | 1 | right | H | 0 | left | C |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 2-bck-macro machine. The same TM as 2-bck-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <C 2 3 -1 <B 0 2 4 -2 <C 2 0 2 5 -3 <A 2 2 0 2 6 -2 1 B> 2 2 0 2 7 -3 1 <B 1 2 0 2 8 -2 A> 1 2 0 2 9 -3 <A 1 2 0 2 10 -2 1 B> 1 2 0 2 11 -1 1 0 A> 2 0 2 12 0 1 0 1 D> 0 2 13 1 1 0 1 2 C> 2 14 2 1 0 1 2 0 D> 15 3 1 0 1 2 0 2 C> 16 2 1 0 1 2 0 2 <A 2 17 3 1 0 1 2 0 1 D> 2 18 2 1 0 1 2 0 1 <C 19 1 1 0 1 2 0 <B 20 0 1 0 1 2 <C 2 21 1 1 0 1 0 D> 2 22 0 1 0 1 0 <C 23 -1 1 0 1 <A 2 24 -2 1 0 <A 1 2 25 -1 1 1 B> 1 2 26 0 1 1 0 A> 2 27 1 1 1 0 1 D> 28 2 1 1 0 1 2 C> 29 1 1 1 0 1 2 <A 2 30 2 1 1 0 1 1 D> 2 31 1 1 1 0 1 1 <C 32 0 1 1 0 1 <B 33 1 1 1 0 0 A> 34 2 1 1 0 0 1 B> 35 1 1 1 0 0 1 <C 2 36 0 1 1 0 0 <B 0 2 37 -1 1 1 0 <C 2 0 2 38 -2 1 1 <A 2 2 0 2 + 40 -4 <A 1 1 2 2 0 2 41 -3 1 B> 1 1 2 2 0 2 42 -2 1 0 A> 1 2 2 0 2 43 -3 1 0 <A 1 2 2 0 2 44 -2 1 1 B> 1 2 2 0 2 45 -1 1 1 0 A> 2 2 0 2 46 0 1 1 0 1 D> 2 0 2 47 -1 1 1 0 1 <C 0 0 2 48 -2 1 1 0 <B 03 2 49 -3 1 1 <C 2 03 2 50 -4 1 <B 0 2 03 2 51 -3 A> 0 2 03 2 52 -2 1 B> 2 03 2 53 -3 1 <B 1 03 2 54 -2 A> 1 03 2 55 -3 <A 1 03 2 56 -2 1 B> 1 03 2 57 -1 1 0 A> 03 2 58 0 1 0 1 B> 0 0 2 59 -1 1 0 1 <C 2 0 2 60 -2 1 0 <B 0 2 0 2 61 -3 1 <C 2 0 2 0 2 62 -4 <B 0 2 0 2 0 2 63 -5 <C 2 0 2 0 2 0 2 64 -6 <A 2 2 0 2 0 2 0 2 65 -5 1 B> 2 2 0 2 0 2 0 2 66 -6 1 <B 1 2 0 2 0 2 0 2 67 -5 A> 1 2 0 2 0 2 0 2 68 -6 <A 1 2 0 2 0 2 0 2 69 -5 1 B> 1 2 0 2 0 2 0 2 70 -4 1 0 A> 2 0 2 0 2 0 2 71 -3 1 0 1 D> 0 2 0 2 0 2 72 -2 1 0 1 2 C> 2 0 2 0 2 73 -1 1 0 1 2 0 D> 0 2 0 2 74 0 1 0 1 2 0 2 C> 2 0 2 75 1 1 0 1 2 0 2 0 D> 0 2 76 2 1 0 1 2 0 2 0 2 C> 2 77 3 1 0 1 2 0 2 0 2 0 D> 78 4 1 0 1 2 0 2 0 2 0 2 C> 79 3 1 0 1 2 0 2 0 2 0 2 <A 2 80 4 1 0 1 2 0 2 0 2 0 1 D> 2 81 3 1 0 1 2 0 2 0 2 0 1 <C 82 2 1 0 1 2 0 2 0 2 0 <B 83 1 1 0 1 2 0 2 0 2 <C 2 84 2 1 0 1 2 0 2 0 0 D> 2 85 1 1 0 1 2 0 2 0 0 <C 86 0 1 0 1 2 0 2 0 <A 2 87 1 1 0 1 2 0 2 1 B> 2 88 0 1 0 1 2 0 2 1 <B 1 89 1 1 0 1 2 0 2 0 A> 1 90 0 1 0 1 2 0 2 0 <A 1 91 1 1 0 1 2 0 2 1 B> 1 92 2 1 0 1 2 0 2 1 0 A> 93 3 1 0 1 2 0 2 1 0 1 B> 94 2 1 0 1 2 0 2 1 0 1 <C 2 95 1 1 0 1 2 0 2 1 0 <B 0 2 96 0 1 0 1 2 0 2 1 <C 2 0 2 97 -1 1 0 1 2 0 2 <B 0 2 0 2 98 -2 1 0 1 2 0 <B 1 0 2 0 2 99 -3 1 0 1 2 <C 2 1 0 2 0 2 100 -2 1 0 1 0 D> 2 1 0 2 0 2 101 -3 1 0 1 0 <C 0 1 0 2 0 2 102 -4 1 0 1 <A 2 0 1 0 2 0 2 103 -5 1 0 <A 1 2 0 1 0 2 0 2 104 -4 1 1 B> 1 2 0 1 0 2 0 2 105 -3 1 1 0 A> 2 0 1 0 2 0 2 106 -2 1 1 0 1 D> 0 1 0 2 0 2 107 -1 1 1 0 1 2 C> 1 0 2 0 2 108 -2 1 1 0 1 2 <B 0 0 2 0 2 109 -3 1 1 0 1 <B 1 0 0 2 0 2 110 -2 1 1 0 0 A> 1 0 0 2 0 2 111 -3 1 1 0 0 <A 1 0 0 2 0 2 112 -2 1 1 0 1 B> 1 0 0 2 0 2 113 -1 1 1 0 1 0 A> 0 0 2 0 2 114 0 1 1 0 1 0 1 B> 0 2 0 2 115 -1 1 1 0 1 0 1 <C 2 2 0 2 116 -2 1 1 0 1 0 <B 0 2 2 0 2 117 -3 1 1 0 1 <C 2 0 2 2 0 2 118 -4 1 1 0 <B 0 2 0 2 2 0 2 119 -5 1 1 <C 2 0 2 0 2 2 0 2 120 -6 1 <B 0 2 0 2 0 2 2 0 2 121 -5 A> 0 2 0 2 0 2 2 0 2 122 -4 1 B> 2 0 2 0 2 2 0 2 123 -5 1 <B 1 0 2 0 2 2 0 2 124 -4 A> 1 0 2 0 2 2 0 2 125 -5 <A 1 0 2 0 2 2 0 2 126 -4 1 B> 1 0 2 0 2 2 0 2 127 -3 1 0 A> 0 2 0 2 2 0 2 128 -2 1 0 1 B> 2 0 2 2 0 2 129 -3 1 0 1 <B 1 0 2 2 0 2 130 -2 1 0 0 A> 1 0 2 2 0 2 131 -3 1 0 0 <A 1 0 2 2 0 2 132 -2 1 0 1 B> 1 0 2 2 0 2 133 -1 1 0 1 0 A> 0 2 2 0 2 134 0 1 0 1 0 1 B> 2 2 0 2 135 -1 1 0 1 0 1 <B 1 2 0 2 136 0 1 0 1 0 0 A> 1 2 0 2 137 -1 1 0 1 0 0 <A 1 2 0 2 138 0 1 0 1 0 1 B> 1 2 0 2 139 1 1 0 1 0 1 0 A> 2 0 2 140 2 1 0 1 0 1 0 1 D> 0 2 141 3 1 0 1 0 1 0 1 2 C> 2 142 4 1 0 1 0 1 0 1 2 0 D> 143 5 1 0 1 0 1 0 1 2 0 2 C> 144 4 1 0 1 0 1 0 1 2 0 2 <A 2 145 5 1 0 1 0 1 0 1 2 0 1 D> 2 146 4 1 0 1 0 1 0 1 2 0 1 <C 147 3 1 0 1 0 1 0 1 2 0 <B 148 2 1 0 1 0 1 0 1 2 <C 2 149 3 1 0 1 0 1 0 1 0 D> 2 150 2 1 0 1 0 1 0 1 0 <C 151 1 1 0 1 0 1 0 1 <A 2 152 0 1 0 1 0 1 0 <A 1 2 153 1 1 0 1 0 1 1 B> 1 2 154 2 1 0 1 0 1 1 0 A> 2 155 3 1 0 1 0 1 1 0 1 D> 156 4 1 0 1 0 1 1 0 1 2 C> 157 3 1 0 1 0 1 1 0 1 2 <A 2 158 4 1 0 1 0 1 1 0 1 1 D> 2 159 3 1 0 1 0 1 1 0 1 1 <C 160 2 1 0 1 0 1 1 0 1 <B 161 3 1 0 1 0 1 1 0 0 A> 162 4 1 0 1 0 1 1 0 0 1 B> 163 3 1 0 1 0 1 1 0 0 1 <C 2 164 2 1 0 1 0 1 1 0 0 <B 0 2 165 1 1 0 1 0 1 1 0 <C 2 0 2 166 0 1 0 1 0 1 1 <A 2 2 0 2 + 168 -2 1 0 1 0 <A 1 1 2 2 0 2 169 -1 1 0 1 1 B> 1 1 2 2 0 2 170 0 1 0 1 1 0 A> 1 2 2 0 2 171 -1 1 0 1 1 0 <A 1 2 2 0 2 172 0 1 0 13 B> 1 2 2 0 2 173 1 1 0 13 0 A> 2 2 0 2 174 2 1 0 13 0 1 D> 2 0 2 175 1 1 0 13 0 1 <C 0 0 2 176 0 1 0 13 0 <B 03 2 177 -1 1 0 13 <C 2 03 2 178 -2 1 0 1 1 <B 0 2 03 2 179 -1 1 0 1 0 A> 0 2 03 2 180 0 1 0 1 0 1 B> 2 03 2 181 -1 1 0 1 0 1 <B 1 03 2 182 0 1 0 1 0 0 A> 1 03 2 183 -1 1 0 1 0 0 <A 1 03 2 184 0 1 0 1 0 1 B> 1 03 2 185 1 1 0 1 0 1 0 A> 03 2 186 2 1 0 1 0 1 0 1 B> 0 0 2 187 1 1 0 1 0 1 0 1 <C 2 0 2 188 0 1 0 1 0 1 0 <B 0 2 0 2 189 -1 1 0 1 0 1 <C 2 0 2 0 2 190 -2 1 0 1 0 <B 0 2 0 2 0 2 191 -3 1 0 1 <C 2 0 2 0 2 0 2 192 -4 1 0 <B 0 2 0 2 0 2 0 2 193 -5 1 <C 2 0 2 0 2 0 2 0 2 194 -6 <B 0 2 0 2 0 2 0 2 0 2 195 -7 <C 2 0 2 0 2 0 2 0 2 0 2 196 -8 <A 2 2 0 2 0 2 0 2 0 2 0 2 197 -7 1 B> 2 2 0 2 0 2 0 2 0 2 0 2 198 -8 1 <B 1 2 0 2 0 2 0 2 0 2 0 2 199 -7 A> 1 2 0 2 0 2 0 2 0 2 0 2 200 -8 <A 1 2 0 2 0 2 0 2 0 2 0 2 201 -7 1 B> 1 2 0 2 0 2 0 2 0 2 0 2 202 -6 1 0 A> 2 0 2 0 2 0 2 0 2 0 2 After 202 steps (201 lines): state = A. Produced 7 nonzeros. Tape index -6, scanned [-8 .. 5].
State | Count | Execution count | First in step | ||||
---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
A | 65 | 33 | 19 | 13 | 0 | 8 | 11 |
B | 68 | 25 | 32 | 11 | 1 | 7 | 6 |
C | 47 | 14 | 24 | 9 | 4 | 2 | 13 |
D | 22 | 11 | 11 | 12 | 17 |