Comment: This TM produces >4.0x10^3860 nonzeros in >3.9x10^7721 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | |||||||
| A | 1RB | 1LA | 1RD | 1 | right | B | 1 | left | A | 1 | right | D |
| B | 2LC | 0RA | 1LB | 2 | left | C | 0 | right | A | 1 | left | B |
| C | 2LA | 0LB | 0RD | 2 | left | A | 0 | left | B | 0 | right | D |
| D | 2RC | 1RH | 0LC | 2 | right | C | 1 | right | H | 0 | left | C |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <C 2
3 -1 <B 0 2
4 -2 <C 2 0 2
5 -3 <A 2 2 0 2
6 -2 1 B> 2 2 0 2
7 -3 1 <B 1 2 0 2
8 -2 A> 1 2 0 2
9 -3 <A 1 2 0 2
10 -2 1 B> 1 2 0 2
11 -1 1 0 A> 2 0 2
12 0 1 0 1 D> 0 2
13 1 1 0 1 2 C> 2
14 2 1 0 1 2 0 D>
15 3 1 0 1 2 0 2 C>
16 2 1 0 1 2 0 2 <A 2
17 3 1 0 1 2 0 1 D> 2
18 2 1 0 1 2 0 1 <C
19 1 1 0 1 2 0 <B
20 0 1 0 1 2 <C 2
21 1 1 0 1 0 D> 2
22 0 1 0 1 0 <C
23 -1 1 0 1 <A 2
24 -2 1 0 <A 1 2
25 -1 1 1 B> 1 2
26 0 1 1 0 A> 2
27 1 1 1 0 1 D>
28 2 1 1 0 1 2 C>
29 1 1 1 0 1 2 <A 2
30 2 1 1 0 1 1 D> 2
31 1 1 1 0 1 1 <C
32 0 1 1 0 1 <B
33 1 1 1 0 0 A>
34 2 1 1 0 0 1 B>
35 1 1 1 0 0 1 <C 2
36 0 1 1 0 0 <B 0 2
37 -1 1 1 0 <C 2 0 2
38 -2 1 1 <A 2 2 0 2
+ 40 -4 <A 1 1 2 2 0 2
41 -3 1 B> 1 1 2 2 0 2
42 -2 1 0 A> 1 2 2 0 2
43 -3 1 0 <A 1 2 2 0 2
44 -2 1 1 B> 1 2 2 0 2
45 -1 1 1 0 A> 2 2 0 2
46 0 1 1 0 1 D> 2 0 2
47 -1 1 1 0 1 <C 0 0 2
48 -2 1 1 0 <B 03 2
49 -3 1 1 <C 2 03 2
50 -4 1 <B 0 2 03 2
51 -3 A> 0 2 03 2
52 -2 1 B> 2 03 2
53 -3 1 <B 1 03 2
54 -2 A> 1 03 2
55 -3 <A 1 03 2
56 -2 1 B> 1 03 2
57 -1 1 0 A> 03 2
58 0 1 0 1 B> 0 0 2
59 -1 1 0 1 <C 2 0 2
60 -2 1 0 <B 0 2 0 2
61 -3 1 <C 2 0 2 0 2
62 -4 <B 0 2 0 2 0 2
63 -5 <C 2 0 2 0 2 0 2
64 -6 <A 2 2 0 2 0 2 0 2
65 -5 1 B> 2 2 0 2 0 2 0 2
66 -6 1 <B 1 2 0 2 0 2 0 2
67 -5 A> 1 2 0 2 0 2 0 2
68 -6 <A 1 2 0 2 0 2 0 2
69 -5 1 B> 1 2 0 2 0 2 0 2
70 -4 1 0 A> 2 0 2 0 2 0 2
71 -3 1 0 1 D> 0 2 0 2 0 2
72 -2 1 0 1 2 C> 2 0 2 0 2
73 -1 1 0 1 2 0 D> 0 2 0 2
74 0 1 0 1 2 0 2 C> 2 0 2
75 1 1 0 1 2 0 2 0 D> 0 2
76 2 1 0 1 2 0 2 0 2 C> 2
77 3 1 0 1 2 0 2 0 2 0 D>
78 4 1 0 1 2 0 2 0 2 0 2 C>
79 3 1 0 1 2 0 2 0 2 0 2 <A 2
80 4 1 0 1 2 0 2 0 2 0 1 D> 2
81 3 1 0 1 2 0 2 0 2 0 1 <C
82 2 1 0 1 2 0 2 0 2 0 <B
83 1 1 0 1 2 0 2 0 2 <C 2
84 2 1 0 1 2 0 2 0 0 D> 2
85 1 1 0 1 2 0 2 0 0 <C
86 0 1 0 1 2 0 2 0 <A 2
87 1 1 0 1 2 0 2 1 B> 2
88 0 1 0 1 2 0 2 1 <B 1
89 1 1 0 1 2 0 2 0 A> 1
90 0 1 0 1 2 0 2 0 <A 1
91 1 1 0 1 2 0 2 1 B> 1
92 2 1 0 1 2 0 2 1 0 A>
93 3 1 0 1 2 0 2 1 0 1 B>
94 2 1 0 1 2 0 2 1 0 1 <C 2
95 1 1 0 1 2 0 2 1 0 <B 0 2
96 0 1 0 1 2 0 2 1 <C 2 0 2
97 -1 1 0 1 2 0 2 <B 0 2 0 2
98 -2 1 0 1 2 0 <B 1 0 2 0 2
99 -3 1 0 1 2 <C 2 1 0 2 0 2
100 -2 1 0 1 0 D> 2 1 0 2 0 2
101 -3 1 0 1 0 <C 0 1 0 2 0 2
102 -4 1 0 1 <A 2 0 1 0 2 0 2
103 -5 1 0 <A 1 2 0 1 0 2 0 2
104 -4 1 1 B> 1 2 0 1 0 2 0 2
105 -3 1 1 0 A> 2 0 1 0 2 0 2
106 -2 1 1 0 1 D> 0 1 0 2 0 2
107 -1 1 1 0 1 2 C> 1 0 2 0 2
108 -2 1 1 0 1 2 <B 0 0 2 0 2
109 -3 1 1 0 1 <B 1 0 0 2 0 2
110 -2 1 1 0 0 A> 1 0 0 2 0 2
111 -3 1 1 0 0 <A 1 0 0 2 0 2
112 -2 1 1 0 1 B> 1 0 0 2 0 2
113 -1 1 1 0 1 0 A> 0 0 2 0 2
114 0 1 1 0 1 0 1 B> 0 2 0 2
115 -1 1 1 0 1 0 1 <C 2 2 0 2
116 -2 1 1 0 1 0 <B 0 2 2 0 2
117 -3 1 1 0 1 <C 2 0 2 2 0 2
118 -4 1 1 0 <B 0 2 0 2 2 0 2
119 -5 1 1 <C 2 0 2 0 2 2 0 2
120 -6 1 <B 0 2 0 2 0 2 2 0 2
121 -5 A> 0 2 0 2 0 2 2 0 2
122 -4 1 B> 2 0 2 0 2 2 0 2
123 -5 1 <B 1 0 2 0 2 2 0 2
124 -4 A> 1 0 2 0 2 2 0 2
125 -5 <A 1 0 2 0 2 2 0 2
126 -4 1 B> 1 0 2 0 2 2 0 2
127 -3 1 0 A> 0 2 0 2 2 0 2
128 -2 1 0 1 B> 2 0 2 2 0 2
129 -3 1 0 1 <B 1 0 2 2 0 2
130 -2 1 0 0 A> 1 0 2 2 0 2
131 -3 1 0 0 <A 1 0 2 2 0 2
132 -2 1 0 1 B> 1 0 2 2 0 2
133 -1 1 0 1 0 A> 0 2 2 0 2
134 0 1 0 1 0 1 B> 2 2 0 2
135 -1 1 0 1 0 1 <B 1 2 0 2
136 0 1 0 1 0 0 A> 1 2 0 2
137 -1 1 0 1 0 0 <A 1 2 0 2
138 0 1 0 1 0 1 B> 1 2 0 2
139 1 1 0 1 0 1 0 A> 2 0 2
140 2 1 0 1 0 1 0 1 D> 0 2
141 3 1 0 1 0 1 0 1 2 C> 2
142 4 1 0 1 0 1 0 1 2 0 D>
143 5 1 0 1 0 1 0 1 2 0 2 C>
144 4 1 0 1 0 1 0 1 2 0 2 <A 2
145 5 1 0 1 0 1 0 1 2 0 1 D> 2
146 4 1 0 1 0 1 0 1 2 0 1 <C
147 3 1 0 1 0 1 0 1 2 0 <B
148 2 1 0 1 0 1 0 1 2 <C 2
149 3 1 0 1 0 1 0 1 0 D> 2
150 2 1 0 1 0 1 0 1 0 <C
151 1 1 0 1 0 1 0 1 <A 2
152 0 1 0 1 0 1 0 <A 1 2
153 1 1 0 1 0 1 1 B> 1 2
154 2 1 0 1 0 1 1 0 A> 2
155 3 1 0 1 0 1 1 0 1 D>
156 4 1 0 1 0 1 1 0 1 2 C>
157 3 1 0 1 0 1 1 0 1 2 <A 2
158 4 1 0 1 0 1 1 0 1 1 D> 2
159 3 1 0 1 0 1 1 0 1 1 <C
160 2 1 0 1 0 1 1 0 1 <B
161 3 1 0 1 0 1 1 0 0 A>
162 4 1 0 1 0 1 1 0 0 1 B>
163 3 1 0 1 0 1 1 0 0 1 <C 2
164 2 1 0 1 0 1 1 0 0 <B 0 2
165 1 1 0 1 0 1 1 0 <C 2 0 2
166 0 1 0 1 0 1 1 <A 2 2 0 2
+ 168 -2 1 0 1 0 <A 1 1 2 2 0 2
169 -1 1 0 1 1 B> 1 1 2 2 0 2
170 0 1 0 1 1 0 A> 1 2 2 0 2
171 -1 1 0 1 1 0 <A 1 2 2 0 2
172 0 1 0 13 B> 1 2 2 0 2
173 1 1 0 13 0 A> 2 2 0 2
174 2 1 0 13 0 1 D> 2 0 2
175 1 1 0 13 0 1 <C 0 0 2
176 0 1 0 13 0 <B 03 2
177 -1 1 0 13 <C 2 03 2
178 -2 1 0 1 1 <B 0 2 03 2
179 -1 1 0 1 0 A> 0 2 03 2
180 0 1 0 1 0 1 B> 2 03 2
181 -1 1 0 1 0 1 <B 1 03 2
182 0 1 0 1 0 0 A> 1 03 2
183 -1 1 0 1 0 0 <A 1 03 2
184 0 1 0 1 0 1 B> 1 03 2
185 1 1 0 1 0 1 0 A> 03 2
186 2 1 0 1 0 1 0 1 B> 0 0 2
187 1 1 0 1 0 1 0 1 <C 2 0 2
188 0 1 0 1 0 1 0 <B 0 2 0 2
189 -1 1 0 1 0 1 <C 2 0 2 0 2
190 -2 1 0 1 0 <B 0 2 0 2 0 2
191 -3 1 0 1 <C 2 0 2 0 2 0 2
192 -4 1 0 <B 0 2 0 2 0 2 0 2
193 -5 1 <C 2 0 2 0 2 0 2 0 2
194 -6 <B 0 2 0 2 0 2 0 2 0 2
195 -7 <C 2 0 2 0 2 0 2 0 2 0 2
196 -8 <A 2 2 0 2 0 2 0 2 0 2 0 2
197 -7 1 B> 2 2 0 2 0 2 0 2 0 2 0 2
198 -8 1 <B 1 2 0 2 0 2 0 2 0 2 0 2
199 -7 A> 1 2 0 2 0 2 0 2 0 2 0 2
200 -8 <A 1 2 0 2 0 2 0 2 0 2 0 2
201 -7 1 B> 1 2 0 2 0 2 0 2 0 2 0 2
202 -6 1 0 A> 2 0 2 0 2 0 2 0 2 0 2
After 202 steps (201 lines): state = A.
Produced 7 nonzeros.
Tape index -6, scanned [-8 .. 5].
| State | Count | Execution count | First in step | ||||
|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
| A | 65 | 33 | 19 | 13 | 0 | 8 | 11 |
| B | 68 | 25 | 32 | 11 | 1 | 7 | 6 |
| C | 47 | 14 | 24 | 9 | 4 | 2 | 13 |
| D | 22 | 11 | 11 | 12 | 17 | ||