Comment: This TM produces >2.2x10^2372 nonzeros in >5.9x10^4744 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
A | 1RB | 1RA | 1LB | 1RC | 1 | right | B | 1 | right | A | 1 | left | B | 1 | right | C |
B | 2LA | 0LB | 3LC | 1RH | 2 | left | A | 0 | left | B | 3 | left | C | 1 | right | H |
C | 1LB | 0RC | 2RA | 2RC | 1 | left | B | 0 | right | C | 2 | right | A | 2 | right | C |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 2-bck-macro machine. The same TM as 2-bck-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 2 3 1 1 A> 2 4 0 1 <B 1 5 -1 <B 0 1 6 -2 <A 2 0 1 7 -1 1 B> 2 0 1 8 -2 1 <C 3 0 1 9 -1 C> 3 0 1 10 0 2 C> 0 1 11 -1 2 <B 1 1 12 -2 <C 3 1 1 13 -3 <B 1 3 1 1 14 -4 <A 2 1 3 1 1 15 -3 1 B> 2 1 3 1 1 16 -4 1 <C 3 1 3 1 1 17 -3 C> 3 1 3 1 1 18 -2 2 C> 1 3 1 1 19 -1 2 0 C> 3 1 1 20 0 2 0 2 C> 1 1 + 22 2 2 0 2 0 0 C> 23 1 2 0 2 0 0 <B 1 24 0 2 0 2 0 <A 2 1 25 1 2 0 2 1 B> 2 1 26 0 2 0 2 1 <C 3 1 27 1 2 0 2 0 C> 3 1 28 2 2 0 2 0 2 C> 1 29 3 2 0 2 0 2 0 C> 30 2 2 0 2 0 2 0 <B 1 31 1 2 0 2 0 2 <A 2 1 32 0 2 0 2 0 <B 1 2 1 33 -1 2 0 2 <A 2 1 2 1 34 -2 2 0 <B 1 2 1 2 1 35 -3 2 <A 2 1 2 1 2 1 36 -4 <B 1 2 1 2 1 2 1 37 -5 <A 2 1 2 1 2 1 2 1 38 -4 1 B> 2 1 2 1 2 1 2 1 39 -5 1 <C 3 1 2 1 2 1 2 1 40 -4 C> 3 1 2 1 2 1 2 1 41 -3 2 C> 1 2 1 2 1 2 1 42 -2 2 0 C> 2 1 2 1 2 1 43 -1 2 0 2 A> 1 2 1 2 1 44 0 2 0 2 1 A> 2 1 2 1 45 -1 2 0 2 1 <B 1 1 2 1 46 -2 2 0 2 <B 0 1 1 2 1 47 -3 2 0 <C 3 0 1 1 2 1 48 -4 2 <B 1 3 0 1 1 2 1 49 -5 <C 3 1 3 0 1 1 2 1 50 -6 <B 1 3 1 3 0 1 1 2 1 51 -7 <A 2 1 3 1 3 0 1 1 2 1 52 -6 1 B> 2 1 3 1 3 0 1 1 2 1 53 -7 1 <C 3 1 3 1 3 0 1 1 2 1 54 -6 C> 3 1 3 1 3 0 1 1 2 1 55 -5 2 C> 1 3 1 3 0 1 1 2 1 56 -4 2 0 C> 3 1 3 0 1 1 2 1 57 -3 2 0 2 C> 1 3 0 1 1 2 1 58 -2 2 0 2 0 C> 3 0 1 1 2 1 59 -1 2 0 2 0 2 C> 0 1 1 2 1 60 -2 2 0 2 0 2 <B 13 2 1 61 -3 2 0 2 0 <C 3 13 2 1 62 -4 2 0 2 <B 1 3 13 2 1 63 -5 2 0 <C 3 1 3 13 2 1 64 -6 2 <B 1 3 1 3 13 2 1 65 -7 <C 3 1 3 1 3 13 2 1 66 -8 <B 1 3 1 3 1 3 13 2 1 67 -9 <A 2 1 3 1 3 1 3 13 2 1 68 -8 1 B> 2 1 3 1 3 1 3 13 2 1 69 -9 1 <C 3 1 3 1 3 1 3 13 2 1 70 -8 C> 3 1 3 1 3 1 3 13 2 1 71 -7 2 C> 1 3 1 3 1 3 13 2 1 72 -6 2 0 C> 3 1 3 1 3 13 2 1 73 -5 2 0 2 C> 1 3 1 3 13 2 1 74 -4 2 0 2 0 C> 3 1 3 13 2 1 75 -3 2 0 2 0 2 C> 1 3 13 2 1 76 -2 2 0 2 0 2 0 C> 3 13 2 1 77 -1 2 0 2 0 2 0 2 C> 13 2 1 + 80 2 2 0 2 0 2 0 2 03 C> 2 1 81 3 2 0 2 0 2 0 2 03 2 A> 1 82 4 2 0 2 0 2 0 2 03 2 1 A> 83 5 2 0 2 0 2 0 2 03 2 1 1 B> 84 4 2 0 2 0 2 0 2 03 2 1 1 <A 2 85 5 2 0 2 0 2 0 2 03 2 1 1 A> 2 86 4 2 0 2 0 2 0 2 03 2 1 1 <B 1 + 88 2 2 0 2 0 2 0 2 03 2 <B 0 0 1 89 1 2 0 2 0 2 0 2 03 <C 3 0 0 1 90 0 2 0 2 0 2 0 2 0 0 <B 1 3 0 0 1 91 -1 2 0 2 0 2 0 2 0 <A 2 1 3 0 0 1 92 0 2 0 2 0 2 0 2 1 B> 2 1 3 0 0 1 93 -1 2 0 2 0 2 0 2 1 <C 3 1 3 0 0 1 94 0 2 0 2 0 2 0 2 0 C> 3 1 3 0 0 1 95 1 2 0 2 0 2 0 2 0 2 C> 1 3 0 0 1 96 2 2 0 2 0 2 0 2 0 2 0 C> 3 0 0 1 97 3 2 0 2 0 2 0 2 0 2 0 2 C> 0 0 1 98 2 2 0 2 0 2 0 2 0 2 0 2 <B 1 0 1 99 1 2 0 2 0 2 0 2 0 2 0 <C 3 1 0 1 100 0 2 0 2 0 2 0 2 0 2 <B 1 3 1 0 1 101 -1 2 0 2 0 2 0 2 0 <C 3 1 3 1 0 1 102 -2 2 0 2 0 2 0 2 <B 1 3 1 3 1 0 1 103 -3 2 0 2 0 2 0 <C 3 1 3 1 3 1 0 1 104 -4 2 0 2 0 2 <B 1 3 1 3 1 3 1 0 1 105 -5 2 0 2 0 <C 3 1 3 1 3 1 3 1 0 1 106 -6 2 0 2 <B 1 3 1 3 1 3 1 3 1 0 1 107 -7 2 0 <C 3 1 3 1 3 1 3 1 3 1 0 1 108 -8 2 <B 1 3 1 3 1 3 1 3 1 3 1 0 1 109 -9 <C 3 1 3 1 3 1 3 1 3 1 3 1 0 1 110 -10 <B 1 3 1 3 1 3 1 3 1 3 1 3 1 0 1 111 -11 <A 2 1 3 1 3 1 3 1 3 1 3 1 3 1 0 1 112 -10 1 B> 2 1 3 1 3 1 3 1 3 1 3 1 3 1 0 1 113 -11 1 <C 3 1 3 1 3 1 3 1 3 1 3 1 3 1 0 1 114 -10 C> 3 1 3 1 3 1 3 1 3 1 3 1 3 1 0 1 115 -9 2 C> 1 3 1 3 1 3 1 3 1 3 1 3 1 0 1 116 -8 2 0 C> 3 1 3 1 3 1 3 1 3 1 3 1 0 1 117 -7 2 0 2 C> 1 3 1 3 1 3 1 3 1 3 1 0 1 118 -6 2 0 2 0 C> 3 1 3 1 3 1 3 1 3 1 0 1 119 -5 2 0 2 0 2 C> 1 3 1 3 1 3 1 3 1 0 1 120 -4 2 0 2 0 2 0 C> 3 1 3 1 3 1 3 1 0 1 121 -3 2 0 2 0 2 0 2 C> 1 3 1 3 1 3 1 0 1 122 -2 2 0 2 0 2 0 2 0 C> 3 1 3 1 3 1 0 1 123 -1 2 0 2 0 2 0 2 0 2 C> 1 3 1 3 1 0 1 124 0 2 0 2 0 2 0 2 0 2 0 C> 3 1 3 1 0 1 125 1 2 0 2 0 2 0 2 0 2 0 2 C> 1 3 1 0 1 126 2 2 0 2 0 2 0 2 0 2 0 2 0 C> 3 1 0 1 127 3 2 0 2 0 2 0 2 0 2 0 2 0 2 C> 1 0 1 128 4 2 0 2 0 2 0 2 0 2 0 2 0 2 0 C> 0 1 129 3 2 0 2 0 2 0 2 0 2 0 2 0 2 0 <B 1 1 130 2 2 0 2 0 2 0 2 0 2 0 2 0 2 <A 2 1 1 131 1 2 0 2 0 2 0 2 0 2 0 2 0 <B 1 2 1 1 132 0 2 0 2 0 2 0 2 0 2 0 2 <A 2 1 2 1 1 133 -1 2 0 2 0 2 0 2 0 2 0 <B 1 2 1 2 1 1 134 -2 2 0 2 0 2 0 2 0 2 <A 2 1 2 1 2 1 1 135 -3 2 0 2 0 2 0 2 0 <B 1 2 1 2 1 2 1 1 136 -4 2 0 2 0 2 0 2 <A 2 1 2 1 2 1 2 1 1 137 -5 2 0 2 0 2 0 <B 1 2 1 2 1 2 1 2 1 1 138 -6 2 0 2 0 2 <A 2 1 2 1 2 1 2 1 2 1 1 139 -7 2 0 2 0 <B 1 2 1 2 1 2 1 2 1 2 1 1 140 -8 2 0 2 <A 2 1 2 1 2 1 2 1 2 1 2 1 1 141 -9 2 0 <B 1 2 1 2 1 2 1 2 1 2 1 2 1 1 142 -10 2 <A 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 143 -11 <B 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 144 -12 <A 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 145 -11 1 B> 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 146 -12 1 <C 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 147 -11 C> 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 148 -10 2 C> 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 149 -9 2 0 C> 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 150 -8 2 0 2 A> 1 2 1 2 1 2 1 2 1 2 1 2 1 1 151 -7 2 0 2 1 A> 2 1 2 1 2 1 2 1 2 1 2 1 1 152 -8 2 0 2 1 <B 1 1 2 1 2 1 2 1 2 1 2 1 1 153 -9 2 0 2 <B 0 1 1 2 1 2 1 2 1 2 1 2 1 1 154 -10 2 0 <C 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1 155 -11 2 <B 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1 156 -12 <C 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1 157 -13 <B 1 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1 158 -14 <A 2 1 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1 159 -13 1 B> 2 1 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1 160 -14 1 <C 3 1 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1 161 -13 C> 3 1 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1 162 -12 2 C> 1 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1 163 -11 2 0 C> 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1 164 -10 2 0 2 C> 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1 165 -9 2 0 2 0 C> 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1 166 -8 2 0 2 0 2 C> 0 1 1 2 1 2 1 2 1 2 1 2 1 1 167 -9 2 0 2 0 2 <B 13 2 1 2 1 2 1 2 1 2 1 1 168 -10 2 0 2 0 <C 3 13 2 1 2 1 2 1 2 1 2 1 1 169 -11 2 0 2 <B 1 3 13 2 1 2 1 2 1 2 1 2 1 1 170 -12 2 0 <C 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1 171 -13 2 <B 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1 172 -14 <C 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1 173 -15 <B 1 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1 174 -16 <A 2 1 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1 175 -15 1 B> 2 1 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1 176 -16 1 <C 3 1 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1 177 -15 C> 3 1 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1 178 -14 2 C> 1 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1 179 -13 2 0 C> 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1 180 -12 2 0 2 C> 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1 181 -11 2 0 2 0 C> 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1 182 -10 2 0 2 0 2 C> 1 3 13 2 1 2 1 2 1 2 1 2 1 1 183 -9 2 0 2 0 2 0 C> 3 13 2 1 2 1 2 1 2 1 2 1 1 184 -8 2 0 2 0 2 0 2 C> 13 2 1 2 1 2 1 2 1 2 1 1 + 187 -5 2 0 2 0 2 0 2 03 C> 2 1 2 1 2 1 2 1 2 1 1 188 -4 2 0 2 0 2 0 2 03 2 A> 1 2 1 2 1 2 1 2 1 1 189 -3 2 0 2 0 2 0 2 03 2 1 A> 2 1 2 1 2 1 2 1 1 190 -4 2 0 2 0 2 0 2 03 2 1 <B 1 1 2 1 2 1 2 1 1 191 -5 2 0 2 0 2 0 2 03 2 <B 0 1 1 2 1 2 1 2 1 1 192 -6 2 0 2 0 2 0 2 03 <C 3 0 1 1 2 1 2 1 2 1 1 193 -7 2 0 2 0 2 0 2 0 0 <B 1 3 0 1 1 2 1 2 1 2 1 1 194 -8 2 0 2 0 2 0 2 0 <A 2 1 3 0 1 1 2 1 2 1 2 1 1 195 -7 2 0 2 0 2 0 2 1 B> 2 1 3 0 1 1 2 1 2 1 2 1 1 196 -8 2 0 2 0 2 0 2 1 <C 3 1 3 0 1 1 2 1 2 1 2 1 1 197 -7 2 0 2 0 2 0 2 0 C> 3 1 3 0 1 1 2 1 2 1 2 1 1 198 -6 2 0 2 0 2 0 2 0 2 C> 1 3 0 1 1 2 1 2 1 2 1 1 199 -5 2 0 2 0 2 0 2 0 2 0 C> 3 0 1 1 2 1 2 1 2 1 1 200 -4 2 0 2 0 2 0 2 0 2 0 2 C> 0 1 1 2 1 2 1 2 1 1 201 -5 2 0 2 0 2 0 2 0 2 0 2 <B 13 2 1 2 1 2 1 1 202 -6 2 0 2 0 2 0 2 0 2 0 <C 3 13 2 1 2 1 2 1 1 203 -7 2 0 2 0 2 0 2 0 2 <B 1 3 13 2 1 2 1 2 1 1 204 -8 2 0 2 0 2 0 2 0 <C 3 1 3 13 2 1 2 1 2 1 1 205 -9 2 0 2 0 2 0 2 <B 1 3 1 3 13 2 1 2 1 2 1 1 206 -10 2 0 2 0 2 0 <C 3 1 3 1 3 13 2 1 2 1 2 1 1 After 206 steps (201 lines): state = C. Produced 18 nonzeros. Tape index -10, scanned [-16 .. 5].
State | Count | Execution count | First in step | ||||||
---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
A | 35 | 14 | 6 | 15 | 0 | 2 | 3 | ||
B | 64 | 24 | 6 | 34 | 1 | 4 | 7 | ||
C | 107 | 29 | 43 | 4 | 31 | 10 | 8 | 42 | 9 |