3-state 4-symbol #h (T.J. & S. Ligocki)

Comment: This TM produces >2.2x10^2372 nonzeros in >5.9x10^4744 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on 0 on 1 on 2 on 3
Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 1RA 1LB 1RC 1 right B 1 right A 1 left B 1 right C
B 2LA 0LB 3LC 1RH 2 left A 0 left B 3 left C 1 right H
C 1LB 0RC 2RA 2RC 1 left B 0 right C 2 right A 2 right C
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     0  1 <A 2
     3     1  1 A> 2
     4     0  1 <B 1
     5    -1  <B 0 1
     6    -2  <A 2 0 1
     7    -1  1 B> 2 0 1
     8    -2  1 <C 3 0 1
     9    -1  C> 3 0 1
    10     0  2 C> 0 1
    11    -1  2 <B 1 1
    12    -2  <C 3 1 1
    13    -3  <B 1 3 1 1
    14    -4  <A 2 1 3 1 1
    15    -3  1 B> 2 1 3 1 1
    16    -4  1 <C 3 1 3 1 1
    17    -3  C> 3 1 3 1 1
    18    -2  2 C> 1 3 1 1
    19    -1  2 0 C> 3 1 1
    20     0  2 0 2 C> 1 1
+   22     2  2 0 2 0 0 C>
    23     1  2 0 2 0 0 <B 1
    24     0  2 0 2 0 <A 2 1
    25     1  2 0 2 1 B> 2 1
    26     0  2 0 2 1 <C 3 1
    27     1  2 0 2 0 C> 3 1
    28     2  2 0 2 0 2 C> 1
    29     3  2 0 2 0 2 0 C>
    30     2  2 0 2 0 2 0 <B 1
    31     1  2 0 2 0 2 <A 2 1
    32     0  2 0 2 0 <B 1 2 1
    33    -1  2 0 2 <A 2 1 2 1
    34    -2  2 0 <B 1 2 1 2 1
    35    -3  2 <A 2 1 2 1 2 1
    36    -4  <B 1 2 1 2 1 2 1
    37    -5  <A 2 1 2 1 2 1 2 1
    38    -4  1 B> 2 1 2 1 2 1 2 1
    39    -5  1 <C 3 1 2 1 2 1 2 1
    40    -4  C> 3 1 2 1 2 1 2 1
    41    -3  2 C> 1 2 1 2 1 2 1
    42    -2  2 0 C> 2 1 2 1 2 1
    43    -1  2 0 2 A> 1 2 1 2 1
    44     0  2 0 2 1 A> 2 1 2 1
    45    -1  2 0 2 1 <B 1 1 2 1
    46    -2  2 0 2 <B 0 1 1 2 1
    47    -3  2 0 <C 3 0 1 1 2 1
    48    -4  2 <B 1 3 0 1 1 2 1
    49    -5  <C 3 1 3 0 1 1 2 1
    50    -6  <B 1 3 1 3 0 1 1 2 1
    51    -7  <A 2 1 3 1 3 0 1 1 2 1
    52    -6  1 B> 2 1 3 1 3 0 1 1 2 1
    53    -7  1 <C 3 1 3 1 3 0 1 1 2 1
    54    -6  C> 3 1 3 1 3 0 1 1 2 1
    55    -5  2 C> 1 3 1 3 0 1 1 2 1
    56    -4  2 0 C> 3 1 3 0 1 1 2 1
    57    -3  2 0 2 C> 1 3 0 1 1 2 1
    58    -2  2 0 2 0 C> 3 0 1 1 2 1
    59    -1  2 0 2 0 2 C> 0 1 1 2 1
    60    -2  2 0 2 0 2 <B 13 2 1
    61    -3  2 0 2 0 <C 3 13 2 1
    62    -4  2 0 2 <B 1 3 13 2 1
    63    -5  2 0 <C 3 1 3 13 2 1
    64    -6  2 <B 1 3 1 3 13 2 1
    65    -7  <C 3 1 3 1 3 13 2 1
    66    -8  <B 1 3 1 3 1 3 13 2 1
    67    -9  <A 2 1 3 1 3 1 3 13 2 1
    68    -8  1 B> 2 1 3 1 3 1 3 13 2 1
    69    -9  1 <C 3 1 3 1 3 1 3 13 2 1
    70    -8  C> 3 1 3 1 3 1 3 13 2 1
    71    -7  2 C> 1 3 1 3 1 3 13 2 1
    72    -6  2 0 C> 3 1 3 1 3 13 2 1
    73    -5  2 0 2 C> 1 3 1 3 13 2 1
    74    -4  2 0 2 0 C> 3 1 3 13 2 1
    75    -3  2 0 2 0 2 C> 1 3 13 2 1
    76    -2  2 0 2 0 2 0 C> 3 13 2 1
    77    -1  2 0 2 0 2 0 2 C> 13 2 1
+   80     2  2 0 2 0 2 0 2 03 C> 2 1
    81     3  2 0 2 0 2 0 2 03 2 A> 1
    82     4  2 0 2 0 2 0 2 03 2 1 A>
    83     5  2 0 2 0 2 0 2 03 2 1 1 B>
    84     4  2 0 2 0 2 0 2 03 2 1 1 <A 2
    85     5  2 0 2 0 2 0 2 03 2 1 1 A> 2
    86     4  2 0 2 0 2 0 2 03 2 1 1 <B 1
+   88     2  2 0 2 0 2 0 2 03 2 <B 0 0 1
    89     1  2 0 2 0 2 0 2 03 <C 3 0 0 1
    90     0  2 0 2 0 2 0 2 0 0 <B 1 3 0 0 1
    91    -1  2 0 2 0 2 0 2 0 <A 2 1 3 0 0 1
    92     0  2 0 2 0 2 0 2 1 B> 2 1 3 0 0 1
    93    -1  2 0 2 0 2 0 2 1 <C 3 1 3 0 0 1
    94     0  2 0 2 0 2 0 2 0 C> 3 1 3 0 0 1
    95     1  2 0 2 0 2 0 2 0 2 C> 1 3 0 0 1
    96     2  2 0 2 0 2 0 2 0 2 0 C> 3 0 0 1
    97     3  2 0 2 0 2 0 2 0 2 0 2 C> 0 0 1
    98     2  2 0 2 0 2 0 2 0 2 0 2 <B 1 0 1
    99     1  2 0 2 0 2 0 2 0 2 0 <C 3 1 0 1
   100     0  2 0 2 0 2 0 2 0 2 <B 1 3 1 0 1
   101    -1  2 0 2 0 2 0 2 0 <C 3 1 3 1 0 1
   102    -2  2 0 2 0 2 0 2 <B 1 3 1 3 1 0 1
   103    -3  2 0 2 0 2 0 <C 3 1 3 1 3 1 0 1
   104    -4  2 0 2 0 2 <B 1 3 1 3 1 3 1 0 1
   105    -5  2 0 2 0 <C 3 1 3 1 3 1 3 1 0 1
   106    -6  2 0 2 <B 1 3 1 3 1 3 1 3 1 0 1
   107    -7  2 0 <C 3 1 3 1 3 1 3 1 3 1 0 1
   108    -8  2 <B 1 3 1 3 1 3 1 3 1 3 1 0 1
   109    -9  <C 3 1 3 1 3 1 3 1 3 1 3 1 0 1
   110   -10  <B 1 3 1 3 1 3 1 3 1 3 1 3 1 0 1
   111   -11  <A 2 1 3 1 3 1 3 1 3 1 3 1 3 1 0 1
   112   -10  1 B> 2 1 3 1 3 1 3 1 3 1 3 1 3 1 0 1
   113   -11  1 <C 3 1 3 1 3 1 3 1 3 1 3 1 3 1 0 1
   114   -10  C> 3 1 3 1 3 1 3 1 3 1 3 1 3 1 0 1
   115    -9  2 C> 1 3 1 3 1 3 1 3 1 3 1 3 1 0 1
   116    -8  2 0 C> 3 1 3 1 3 1 3 1 3 1 3 1 0 1
   117    -7  2 0 2 C> 1 3 1 3 1 3 1 3 1 3 1 0 1
   118    -6  2 0 2 0 C> 3 1 3 1 3 1 3 1 3 1 0 1
   119    -5  2 0 2 0 2 C> 1 3 1 3 1 3 1 3 1 0 1
   120    -4  2 0 2 0 2 0 C> 3 1 3 1 3 1 3 1 0 1
   121    -3  2 0 2 0 2 0 2 C> 1 3 1 3 1 3 1 0 1
   122    -2  2 0 2 0 2 0 2 0 C> 3 1 3 1 3 1 0 1
   123    -1  2 0 2 0 2 0 2 0 2 C> 1 3 1 3 1 0 1
   124     0  2 0 2 0 2 0 2 0 2 0 C> 3 1 3 1 0 1
   125     1  2 0 2 0 2 0 2 0 2 0 2 C> 1 3 1 0 1
   126     2  2 0 2 0 2 0 2 0 2 0 2 0 C> 3 1 0 1
   127     3  2 0 2 0 2 0 2 0 2 0 2 0 2 C> 1 0 1
   128     4  2 0 2 0 2 0 2 0 2 0 2 0 2 0 C> 0 1
   129     3  2 0 2 0 2 0 2 0 2 0 2 0 2 0 <B 1 1
   130     2  2 0 2 0 2 0 2 0 2 0 2 0 2 <A 2 1 1
   131     1  2 0 2 0 2 0 2 0 2 0 2 0 <B 1 2 1 1
   132     0  2 0 2 0 2 0 2 0 2 0 2 <A 2 1 2 1 1
   133    -1  2 0 2 0 2 0 2 0 2 0 <B 1 2 1 2 1 1
   134    -2  2 0 2 0 2 0 2 0 2 <A 2 1 2 1 2 1 1
   135    -3  2 0 2 0 2 0 2 0 <B 1 2 1 2 1 2 1 1
   136    -4  2 0 2 0 2 0 2 <A 2 1 2 1 2 1 2 1 1
   137    -5  2 0 2 0 2 0 <B 1 2 1 2 1 2 1 2 1 1
   138    -6  2 0 2 0 2 <A 2 1 2 1 2 1 2 1 2 1 1
   139    -7  2 0 2 0 <B 1 2 1 2 1 2 1 2 1 2 1 1
   140    -8  2 0 2 <A 2 1 2 1 2 1 2 1 2 1 2 1 1
   141    -9  2 0 <B 1 2 1 2 1 2 1 2 1 2 1 2 1 1
   142   -10  2 <A 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1
   143   -11  <B 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1
   144   -12  <A 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1
   145   -11  1 B> 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1
   146   -12  1 <C 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1
   147   -11  C> 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1
   148   -10  2 C> 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1
   149    -9  2 0 C> 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1
   150    -8  2 0 2 A> 1 2 1 2 1 2 1 2 1 2 1 2 1 1
   151    -7  2 0 2 1 A> 2 1 2 1 2 1 2 1 2 1 2 1 1
   152    -8  2 0 2 1 <B 1 1 2 1 2 1 2 1 2 1 2 1 1
   153    -9  2 0 2 <B 0 1 1 2 1 2 1 2 1 2 1 2 1 1
   154   -10  2 0 <C 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
   155   -11  2 <B 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
   156   -12  <C 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
   157   -13  <B 1 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
   158   -14  <A 2 1 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
   159   -13  1 B> 2 1 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
   160   -14  1 <C 3 1 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
   161   -13  C> 3 1 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
   162   -12  2 C> 1 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
   163   -11  2 0 C> 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
   164   -10  2 0 2 C> 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
   165    -9  2 0 2 0 C> 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
   166    -8  2 0 2 0 2 C> 0 1 1 2 1 2 1 2 1 2 1 2 1 1
   167    -9  2 0 2 0 2 <B 13 2 1 2 1 2 1 2 1 2 1 1
   168   -10  2 0 2 0 <C 3 13 2 1 2 1 2 1 2 1 2 1 1
   169   -11  2 0 2 <B 1 3 13 2 1 2 1 2 1 2 1 2 1 1
   170   -12  2 0 <C 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
   171   -13  2 <B 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
   172   -14  <C 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
   173   -15  <B 1 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
   174   -16  <A 2 1 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
   175   -15  1 B> 2 1 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
   176   -16  1 <C 3 1 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
   177   -15  C> 3 1 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
   178   -14  2 C> 1 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
   179   -13  2 0 C> 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
   180   -12  2 0 2 C> 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
   181   -11  2 0 2 0 C> 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
   182   -10  2 0 2 0 2 C> 1 3 13 2 1 2 1 2 1 2 1 2 1 1
   183    -9  2 0 2 0 2 0 C> 3 13 2 1 2 1 2 1 2 1 2 1 1
   184    -8  2 0 2 0 2 0 2 C> 13 2 1 2 1 2 1 2 1 2 1 1
+  187    -5  2 0 2 0 2 0 2 03 C> 2 1 2 1 2 1 2 1 2 1 1
   188    -4  2 0 2 0 2 0 2 03 2 A> 1 2 1 2 1 2 1 2 1 1
   189    -3  2 0 2 0 2 0 2 03 2 1 A> 2 1 2 1 2 1 2 1 1
   190    -4  2 0 2 0 2 0 2 03 2 1 <B 1 1 2 1 2 1 2 1 1
   191    -5  2 0 2 0 2 0 2 03 2 <B 0 1 1 2 1 2 1 2 1 1
   192    -6  2 0 2 0 2 0 2 03 <C 3 0 1 1 2 1 2 1 2 1 1
   193    -7  2 0 2 0 2 0 2 0 0 <B 1 3 0 1 1 2 1 2 1 2 1 1
   194    -8  2 0 2 0 2 0 2 0 <A 2 1 3 0 1 1 2 1 2 1 2 1 1
   195    -7  2 0 2 0 2 0 2 1 B> 2 1 3 0 1 1 2 1 2 1 2 1 1
   196    -8  2 0 2 0 2 0 2 1 <C 3 1 3 0 1 1 2 1 2 1 2 1 1
   197    -7  2 0 2 0 2 0 2 0 C> 3 1 3 0 1 1 2 1 2 1 2 1 1
   198    -6  2 0 2 0 2 0 2 0 2 C> 1 3 0 1 1 2 1 2 1 2 1 1
   199    -5  2 0 2 0 2 0 2 0 2 0 C> 3 0 1 1 2 1 2 1 2 1 1
   200    -4  2 0 2 0 2 0 2 0 2 0 2 C> 0 1 1 2 1 2 1 2 1 1
   201    -5  2 0 2 0 2 0 2 0 2 0 2 <B 13 2 1 2 1 2 1 1
   202    -6  2 0 2 0 2 0 2 0 2 0 <C 3 13 2 1 2 1 2 1 1
   203    -7  2 0 2 0 2 0 2 0 2 <B 1 3 13 2 1 2 1 2 1 1
   204    -8  2 0 2 0 2 0 2 0 <C 3 1 3 13 2 1 2 1 2 1 1
   205    -9  2 0 2 0 2 0 2 <B 1 3 1 3 13 2 1 2 1 2 1 1
   206   -10  2 0 2 0 2 0 <C 3 1 3 1 3 13 2 1 2 1 2 1 1

After 206 steps (201 lines): state = C.
Produced     18 nonzeros.
Tape index -10, scanned [-16 .. 5].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 0 on 1 on 2 on 3
A 35 14 6 15   0 2 3  
B 64 24 6 34   1 4 7  
C 107 29 43 4 31 10 8 42 9
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:13:54 CEST 2010