Comment: This TM produces >2.2x10^2372 nonzeros in >5.9x10^4744 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
| A | 1RB | 1RA | 1LB | 1RC | 1 | right | B | 1 | right | A | 1 | left | B | 1 | right | C |
| B | 2LA | 0LB | 3LC | 1RH | 2 | left | A | 0 | left | B | 3 | left | C | 1 | right | H |
| C | 1LB | 0RC | 2RA | 2RC | 1 | left | B | 0 | right | C | 2 | right | A | 2 | right | C |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A 2
3 1 1 A> 2
4 0 1 <B 1
5 -1 <B 0 1
6 -2 <A 2 0 1
7 -1 1 B> 2 0 1
8 -2 1 <C 3 0 1
9 -1 C> 3 0 1
10 0 2 C> 0 1
11 -1 2 <B 1 1
12 -2 <C 3 1 1
13 -3 <B 1 3 1 1
14 -4 <A 2 1 3 1 1
15 -3 1 B> 2 1 3 1 1
16 -4 1 <C 3 1 3 1 1
17 -3 C> 3 1 3 1 1
18 -2 2 C> 1 3 1 1
19 -1 2 0 C> 3 1 1
20 0 2 0 2 C> 1 1
+ 22 2 2 0 2 0 0 C>
23 1 2 0 2 0 0 <B 1
24 0 2 0 2 0 <A 2 1
25 1 2 0 2 1 B> 2 1
26 0 2 0 2 1 <C 3 1
27 1 2 0 2 0 C> 3 1
28 2 2 0 2 0 2 C> 1
29 3 2 0 2 0 2 0 C>
30 2 2 0 2 0 2 0 <B 1
31 1 2 0 2 0 2 <A 2 1
32 0 2 0 2 0 <B 1 2 1
33 -1 2 0 2 <A 2 1 2 1
34 -2 2 0 <B 1 2 1 2 1
35 -3 2 <A 2 1 2 1 2 1
36 -4 <B 1 2 1 2 1 2 1
37 -5 <A 2 1 2 1 2 1 2 1
38 -4 1 B> 2 1 2 1 2 1 2 1
39 -5 1 <C 3 1 2 1 2 1 2 1
40 -4 C> 3 1 2 1 2 1 2 1
41 -3 2 C> 1 2 1 2 1 2 1
42 -2 2 0 C> 2 1 2 1 2 1
43 -1 2 0 2 A> 1 2 1 2 1
44 0 2 0 2 1 A> 2 1 2 1
45 -1 2 0 2 1 <B 1 1 2 1
46 -2 2 0 2 <B 0 1 1 2 1
47 -3 2 0 <C 3 0 1 1 2 1
48 -4 2 <B 1 3 0 1 1 2 1
49 -5 <C 3 1 3 0 1 1 2 1
50 -6 <B 1 3 1 3 0 1 1 2 1
51 -7 <A 2 1 3 1 3 0 1 1 2 1
52 -6 1 B> 2 1 3 1 3 0 1 1 2 1
53 -7 1 <C 3 1 3 1 3 0 1 1 2 1
54 -6 C> 3 1 3 1 3 0 1 1 2 1
55 -5 2 C> 1 3 1 3 0 1 1 2 1
56 -4 2 0 C> 3 1 3 0 1 1 2 1
57 -3 2 0 2 C> 1 3 0 1 1 2 1
58 -2 2 0 2 0 C> 3 0 1 1 2 1
59 -1 2 0 2 0 2 C> 0 1 1 2 1
60 -2 2 0 2 0 2 <B 13 2 1
61 -3 2 0 2 0 <C 3 13 2 1
62 -4 2 0 2 <B 1 3 13 2 1
63 -5 2 0 <C 3 1 3 13 2 1
64 -6 2 <B 1 3 1 3 13 2 1
65 -7 <C 3 1 3 1 3 13 2 1
66 -8 <B 1 3 1 3 1 3 13 2 1
67 -9 <A 2 1 3 1 3 1 3 13 2 1
68 -8 1 B> 2 1 3 1 3 1 3 13 2 1
69 -9 1 <C 3 1 3 1 3 1 3 13 2 1
70 -8 C> 3 1 3 1 3 1 3 13 2 1
71 -7 2 C> 1 3 1 3 1 3 13 2 1
72 -6 2 0 C> 3 1 3 1 3 13 2 1
73 -5 2 0 2 C> 1 3 1 3 13 2 1
74 -4 2 0 2 0 C> 3 1 3 13 2 1
75 -3 2 0 2 0 2 C> 1 3 13 2 1
76 -2 2 0 2 0 2 0 C> 3 13 2 1
77 -1 2 0 2 0 2 0 2 C> 13 2 1
+ 80 2 2 0 2 0 2 0 2 03 C> 2 1
81 3 2 0 2 0 2 0 2 03 2 A> 1
82 4 2 0 2 0 2 0 2 03 2 1 A>
83 5 2 0 2 0 2 0 2 03 2 1 1 B>
84 4 2 0 2 0 2 0 2 03 2 1 1 <A 2
85 5 2 0 2 0 2 0 2 03 2 1 1 A> 2
86 4 2 0 2 0 2 0 2 03 2 1 1 <B 1
+ 88 2 2 0 2 0 2 0 2 03 2 <B 0 0 1
89 1 2 0 2 0 2 0 2 03 <C 3 0 0 1
90 0 2 0 2 0 2 0 2 0 0 <B 1 3 0 0 1
91 -1 2 0 2 0 2 0 2 0 <A 2 1 3 0 0 1
92 0 2 0 2 0 2 0 2 1 B> 2 1 3 0 0 1
93 -1 2 0 2 0 2 0 2 1 <C 3 1 3 0 0 1
94 0 2 0 2 0 2 0 2 0 C> 3 1 3 0 0 1
95 1 2 0 2 0 2 0 2 0 2 C> 1 3 0 0 1
96 2 2 0 2 0 2 0 2 0 2 0 C> 3 0 0 1
97 3 2 0 2 0 2 0 2 0 2 0 2 C> 0 0 1
98 2 2 0 2 0 2 0 2 0 2 0 2 <B 1 0 1
99 1 2 0 2 0 2 0 2 0 2 0 <C 3 1 0 1
100 0 2 0 2 0 2 0 2 0 2 <B 1 3 1 0 1
101 -1 2 0 2 0 2 0 2 0 <C 3 1 3 1 0 1
102 -2 2 0 2 0 2 0 2 <B 1 3 1 3 1 0 1
103 -3 2 0 2 0 2 0 <C 3 1 3 1 3 1 0 1
104 -4 2 0 2 0 2 <B 1 3 1 3 1 3 1 0 1
105 -5 2 0 2 0 <C 3 1 3 1 3 1 3 1 0 1
106 -6 2 0 2 <B 1 3 1 3 1 3 1 3 1 0 1
107 -7 2 0 <C 3 1 3 1 3 1 3 1 3 1 0 1
108 -8 2 <B 1 3 1 3 1 3 1 3 1 3 1 0 1
109 -9 <C 3 1 3 1 3 1 3 1 3 1 3 1 0 1
110 -10 <B 1 3 1 3 1 3 1 3 1 3 1 3 1 0 1
111 -11 <A 2 1 3 1 3 1 3 1 3 1 3 1 3 1 0 1
112 -10 1 B> 2 1 3 1 3 1 3 1 3 1 3 1 3 1 0 1
113 -11 1 <C 3 1 3 1 3 1 3 1 3 1 3 1 3 1 0 1
114 -10 C> 3 1 3 1 3 1 3 1 3 1 3 1 3 1 0 1
115 -9 2 C> 1 3 1 3 1 3 1 3 1 3 1 3 1 0 1
116 -8 2 0 C> 3 1 3 1 3 1 3 1 3 1 3 1 0 1
117 -7 2 0 2 C> 1 3 1 3 1 3 1 3 1 3 1 0 1
118 -6 2 0 2 0 C> 3 1 3 1 3 1 3 1 3 1 0 1
119 -5 2 0 2 0 2 C> 1 3 1 3 1 3 1 3 1 0 1
120 -4 2 0 2 0 2 0 C> 3 1 3 1 3 1 3 1 0 1
121 -3 2 0 2 0 2 0 2 C> 1 3 1 3 1 3 1 0 1
122 -2 2 0 2 0 2 0 2 0 C> 3 1 3 1 3 1 0 1
123 -1 2 0 2 0 2 0 2 0 2 C> 1 3 1 3 1 0 1
124 0 2 0 2 0 2 0 2 0 2 0 C> 3 1 3 1 0 1
125 1 2 0 2 0 2 0 2 0 2 0 2 C> 1 3 1 0 1
126 2 2 0 2 0 2 0 2 0 2 0 2 0 C> 3 1 0 1
127 3 2 0 2 0 2 0 2 0 2 0 2 0 2 C> 1 0 1
128 4 2 0 2 0 2 0 2 0 2 0 2 0 2 0 C> 0 1
129 3 2 0 2 0 2 0 2 0 2 0 2 0 2 0 <B 1 1
130 2 2 0 2 0 2 0 2 0 2 0 2 0 2 <A 2 1 1
131 1 2 0 2 0 2 0 2 0 2 0 2 0 <B 1 2 1 1
132 0 2 0 2 0 2 0 2 0 2 0 2 <A 2 1 2 1 1
133 -1 2 0 2 0 2 0 2 0 2 0 <B 1 2 1 2 1 1
134 -2 2 0 2 0 2 0 2 0 2 <A 2 1 2 1 2 1 1
135 -3 2 0 2 0 2 0 2 0 <B 1 2 1 2 1 2 1 1
136 -4 2 0 2 0 2 0 2 <A 2 1 2 1 2 1 2 1 1
137 -5 2 0 2 0 2 0 <B 1 2 1 2 1 2 1 2 1 1
138 -6 2 0 2 0 2 <A 2 1 2 1 2 1 2 1 2 1 1
139 -7 2 0 2 0 <B 1 2 1 2 1 2 1 2 1 2 1 1
140 -8 2 0 2 <A 2 1 2 1 2 1 2 1 2 1 2 1 1
141 -9 2 0 <B 1 2 1 2 1 2 1 2 1 2 1 2 1 1
142 -10 2 <A 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1
143 -11 <B 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1
144 -12 <A 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1
145 -11 1 B> 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1
146 -12 1 <C 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1
147 -11 C> 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1
148 -10 2 C> 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1
149 -9 2 0 C> 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1
150 -8 2 0 2 A> 1 2 1 2 1 2 1 2 1 2 1 2 1 1
151 -7 2 0 2 1 A> 2 1 2 1 2 1 2 1 2 1 2 1 1
152 -8 2 0 2 1 <B 1 1 2 1 2 1 2 1 2 1 2 1 1
153 -9 2 0 2 <B 0 1 1 2 1 2 1 2 1 2 1 2 1 1
154 -10 2 0 <C 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
155 -11 2 <B 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
156 -12 <C 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
157 -13 <B 1 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
158 -14 <A 2 1 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
159 -13 1 B> 2 1 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
160 -14 1 <C 3 1 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
161 -13 C> 3 1 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
162 -12 2 C> 1 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
163 -11 2 0 C> 3 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
164 -10 2 0 2 C> 1 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
165 -9 2 0 2 0 C> 3 0 1 1 2 1 2 1 2 1 2 1 2 1 1
166 -8 2 0 2 0 2 C> 0 1 1 2 1 2 1 2 1 2 1 2 1 1
167 -9 2 0 2 0 2 <B 13 2 1 2 1 2 1 2 1 2 1 1
168 -10 2 0 2 0 <C 3 13 2 1 2 1 2 1 2 1 2 1 1
169 -11 2 0 2 <B 1 3 13 2 1 2 1 2 1 2 1 2 1 1
170 -12 2 0 <C 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
171 -13 2 <B 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
172 -14 <C 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
173 -15 <B 1 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
174 -16 <A 2 1 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
175 -15 1 B> 2 1 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
176 -16 1 <C 3 1 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
177 -15 C> 3 1 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
178 -14 2 C> 1 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
179 -13 2 0 C> 3 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
180 -12 2 0 2 C> 1 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
181 -11 2 0 2 0 C> 3 1 3 13 2 1 2 1 2 1 2 1 2 1 1
182 -10 2 0 2 0 2 C> 1 3 13 2 1 2 1 2 1 2 1 2 1 1
183 -9 2 0 2 0 2 0 C> 3 13 2 1 2 1 2 1 2 1 2 1 1
184 -8 2 0 2 0 2 0 2 C> 13 2 1 2 1 2 1 2 1 2 1 1
+ 187 -5 2 0 2 0 2 0 2 03 C> 2 1 2 1 2 1 2 1 2 1 1
188 -4 2 0 2 0 2 0 2 03 2 A> 1 2 1 2 1 2 1 2 1 1
189 -3 2 0 2 0 2 0 2 03 2 1 A> 2 1 2 1 2 1 2 1 1
190 -4 2 0 2 0 2 0 2 03 2 1 <B 1 1 2 1 2 1 2 1 1
191 -5 2 0 2 0 2 0 2 03 2 <B 0 1 1 2 1 2 1 2 1 1
192 -6 2 0 2 0 2 0 2 03 <C 3 0 1 1 2 1 2 1 2 1 1
193 -7 2 0 2 0 2 0 2 0 0 <B 1 3 0 1 1 2 1 2 1 2 1 1
194 -8 2 0 2 0 2 0 2 0 <A 2 1 3 0 1 1 2 1 2 1 2 1 1
195 -7 2 0 2 0 2 0 2 1 B> 2 1 3 0 1 1 2 1 2 1 2 1 1
196 -8 2 0 2 0 2 0 2 1 <C 3 1 3 0 1 1 2 1 2 1 2 1 1
197 -7 2 0 2 0 2 0 2 0 C> 3 1 3 0 1 1 2 1 2 1 2 1 1
198 -6 2 0 2 0 2 0 2 0 2 C> 1 3 0 1 1 2 1 2 1 2 1 1
199 -5 2 0 2 0 2 0 2 0 2 0 C> 3 0 1 1 2 1 2 1 2 1 1
200 -4 2 0 2 0 2 0 2 0 2 0 2 C> 0 1 1 2 1 2 1 2 1 1
201 -5 2 0 2 0 2 0 2 0 2 0 2 <B 13 2 1 2 1 2 1 1
202 -6 2 0 2 0 2 0 2 0 2 0 <C 3 13 2 1 2 1 2 1 1
203 -7 2 0 2 0 2 0 2 0 2 <B 1 3 13 2 1 2 1 2 1 1
204 -8 2 0 2 0 2 0 2 0 <C 3 1 3 13 2 1 2 1 2 1 1
205 -9 2 0 2 0 2 0 2 <B 1 3 1 3 13 2 1 2 1 2 1 1
206 -10 2 0 2 0 2 0 <C 3 1 3 1 3 13 2 1 2 1 2 1 1
After 206 steps (201 lines): state = C.
Produced 18 nonzeros.
Tape index -10, scanned [-16 .. 5].
| State | Count | Execution count | First in step | ||||||
|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
| A | 35 | 14 | 6 | 15 | 0 | 2 | 3 | ||
| B | 64 | 24 | 6 | 34 | 1 | 4 | 7 | ||
| C | 107 | 29 | 43 | 4 | 31 | 10 | 8 | 42 | 9 |