3-state 4-symbol #e (T.J. & S. Ligocki)

Comment: This TM produces >2.1x10^628 nonzeros in >3.1x10^1256 steps.

State on
0
on
1
on
2
on
3
on 0 on 1 on 2 on 3
Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 3LA 3RC 1RA 1 right B 3 left A 3 right C 1 right A
B 2RC 1LA 1RH 2RB 2 right C 1 left A 1 right H 2 right B
C 1LC 1RB 1LB 2RA 1 left C 1 right B 1 left B 2 right A
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing macro factor 1.

Steps BasSteps BasTpos  Tape contents
    0        0       0  A>
    1        1       1  1 B>
    2        2       2  1 2 C>
    3        3       1  1 2 <C 1
    4        4       0  1 <B 12
    5        5      -1  <A 13
    6        6       0  1 B> 13
    7        7      -1  1 <A 13
    8        8      -2  <A 3 13
    9        9      -1  1 B> 3 13
   10       10       0  1 2 B> 13
   11       11      -1  1 2 <A 13
   12       12       0  1 3 C> 13
   13       13       1  1 3 1 B> 12
   14       14       0  1 3 1 <A 12
   15       15      -1  1 3 <A 3 12
   16       16       0  12 A> 3 12
   17       17       1  13 A> 12
   18       18       0  13 <A 3 1
   19       21      -3  <A 34 1
   20       22      -2  1 B> 34 1
   21       26       2  1 24 B> 1
   22       27       1  1 24 <A 1
   23       28       2  1 23 3 C> 1
   24       29       3  1 23 3 1 B>
   25       30       4  1 23 3 1 2 C>
   26       31       3  1 23 3 1 2 <C 1
   27       32       2  1 23 3 1 <B 12
   28       33       1  1 23 3 <A 13
   29       34       2  1 23 1 A> 13
   30       35       1  1 23 1 <A 3 12
   31       36       0  1 23 <A 32 12
   32       37       1  1 22 3 C> 32 12
   33       38       2  1 22 3 2 A> 3 12
   34       39       3  1 22 3 2 1 A> 12
   35       40       2  1 22 3 2 1 <A 3 1
   36       41       1  1 22 3 2 <A 32 1
   37       42       2  1 22 32 C> 32 1
   38       43       3  1 22 32 2 A> 3 1
   39       44       4  1 22 32 2 1 A> 1
   40       45       3  1 22 32 2 1 <A 3
   41       46       2  1 22 32 2 <A 32
   42       47       3  1 22 33 C> 32
   43       48       4  1 22 33 2 A> 3
   44       49       5  1 22 33 2 1 A>
   45       50       6  1 22 33 2 12 B>
   46       51       7  1 22 33 2 12 2 C>
   47       52       6  1 22 33 2 12 2 <C 1
   48       53       5  1 22 33 2 12 <B 12
   49       54       4  1 22 33 2 1 <A 13
   50       55       3  1 22 33 2 <A 3 13
   51       56       4  1 22 34 C> 3 13
   52       57       5  1 22 34 2 A> 13
   53       58       4  1 22 34 2 <A 3 12
   54       59       5  1 22 35 C> 3 12
   55       60       6  1 22 35 2 A> 12
   56       61       5  1 22 35 2 <A 3 1
   57       62       6  1 22 36 C> 3 1
   58       63       7  1 22 36 2 A> 1
   59       64       6  1 22 36 2 <A 3
   60       65       7  1 22 37 C> 3
   61       66       8  1 22 37 2 A>
   62       67       9  1 22 37 2 1 B>
   63       68      10  1 22 37 2 1 2 C>
   64       69       9  1 22 37 2 1 2 <C 1
   65       70       8  1 22 37 2 1 <B 12
   66       71       7  1 22 37 2 <A 13
   67       72       8  1 22 38 C> 13
   68       73       9  1 22 38 1 B> 12
   69       74       8  1 22 38 1 <A 12
   70       75       7  1 22 38 <A 3 12
   71       76       8  1 22 37 1 A> 3 12
   72       77       9  1 22 37 12 A> 12
   73       78       8  1 22 37 12 <A 3 1
   74       80       6  1 22 37 <A 33 1
   75       81       7  1 22 36 1 A> 33 1
   76       84      10  1 22 36 14 A> 1
   77       85       9  1 22 36 14 <A 3
   78       89       5  1 22 36 <A 35
   79       90       6  1 22 35 1 A> 35
   80       95      11  1 22 35 16 A>
   81       96      12  1 22 35 17 B>
   82       97      13  1 22 35 17 2 C>
   83       98      12  1 22 35 17 2 <C 1
   84       99      11  1 22 35 17 <B 12
   85      100      10  1 22 35 16 <A 13
   86      106       4  1 22 35 <A 36 13
   87      107       5  1 22 34 1 A> 36 13
   88      113      11  1 22 34 17 A> 13
   89      114      10  1 22 34 17 <A 3 12
   90      121       3  1 22 34 <A 38 12
   91      122       4  1 22 33 1 A> 38 12
   92      130      12  1 22 33 19 A> 12
   93      131      11  1 22 33 19 <A 3 1
   94      140       2  1 22 33 <A 310 1
   95      141       3  1 22 32 1 A> 310 1
   96      151      13  1 22 32 111 A> 1
   97      152      12  1 22 32 111 <A 3
   98      163       1  1 22 32 <A 312
   99      164       2  1 22 3 1 A> 312
  100      176      14  1 22 3 113 A>
  101      177      15  1 22 3 114 B>
  102      178      16  1 22 3 114 2 C>
  103      179      15  1 22 3 114 2 <C 1
  104      180      14  1 22 3 114 <B 12
  105      181      13  1 22 3 113 <A 13
  106      194       0  1 22 3 <A 313 13
  107      195       1  1 22 1 A> 313 13
  108      208      14  1 22 114 A> 13
  109      209      13  1 22 114 <A 3 12
  110      223      -1  1 22 <A 315 12
  111      224       0  1 2 3 C> 315 12
  112      225       1  1 2 3 2 A> 314 12
  113      239      15  1 2 3 2 114 A> 12
  114      240      14  1 2 3 2 114 <A 3 1
  115      254       0  1 2 3 2 <A 315 1
  116      255       1  1 2 32 C> 315 1
  117      256       2  1 2 32 2 A> 314 1
  118      270      16  1 2 32 2 114 A> 1
  119      271      15  1 2 32 2 114 <A 3
  120      285       1  1 2 32 2 <A 315
  121      286       2  1 2 33 C> 315
  122      287       3  1 2 33 2 A> 314
  123      301      17  1 2 33 2 114 A>
  124      302      18  1 2 33 2 115 B>
  125      303      19  1 2 33 2 115 2 C>
  126      304      18  1 2 33 2 115 2 <C 1
  127      305      17  1 2 33 2 115 <B 12
  128      306      16  1 2 33 2 114 <A 13
  129      320       2  1 2 33 2 <A 314 13
  130      321       3  1 2 34 C> 314 13
  131      322       4  1 2 34 2 A> 313 13
  132      335      17  1 2 34 2 113 A> 13
  133      336      16  1 2 34 2 113 <A 3 12
  134      349       3  1 2 34 2 <A 314 12
  135      350       4  1 2 35 C> 314 12
  136      351       5  1 2 35 2 A> 313 12
  137      364      18  1 2 35 2 113 A> 12
  138      365      17  1 2 35 2 113 <A 3 1
  139      378       4  1 2 35 2 <A 314 1
  140      379       5  1 2 36 C> 314 1
  141      380       6  1 2 36 2 A> 313 1
  142      393      19  1 2 36 2 113 A> 1
  143      394      18  1 2 36 2 113 <A 3
  144      407       5  1 2 36 2 <A 314
  145      408       6  1 2 37 C> 314
  146      409       7  1 2 37 2 A> 313
  147      422      20  1 2 37 2 113 A>
  148      423      21  1 2 37 2 114 B>
  149      424      22  1 2 37 2 114 2 C>
  150      425      21  1 2 37 2 114 2 <C 1
  151      426      20  1 2 37 2 114 <B 12
  152      427      19  1 2 37 2 113 <A 13
  153      440       6  1 2 37 2 <A 313 13
  154      441       7  1 2 38 C> 313 13
  155      442       8  1 2 38 2 A> 312 13
  156      454      20  1 2 38 2 112 A> 13
  157      455      19  1 2 38 2 112 <A 3 12
  158      467       7  1 2 38 2 <A 313 12
  159      468       8  1 2 39 C> 313 12
  160      469       9  1 2 39 2 A> 312 12
  161      481      21  1 2 39 2 112 A> 12
  162      482      20  1 2 39 2 112 <A 3 1
  163      494       8  1 2 39 2 <A 313 1
  164      495       9  1 2 310 C> 313 1
  165      496      10  1 2 310 2 A> 312 1
  166      508      22  1 2 310 2 112 A> 1
  167      509      21  1 2 310 2 112 <A 3
  168      521       9  1 2 310 2 <A 313
  169      522      10  1 2 311 C> 313
  170      523      11  1 2 311 2 A> 312
  171      535      23  1 2 311 2 112 A>
  172      536      24  1 2 311 2 113 B>
  173      537      25  1 2 311 2 113 2 C>
  174      538      24  1 2 311 2 113 2 <C 1
  175      539      23  1 2 311 2 113 <B 12
  176      540      22  1 2 311 2 112 <A 13
  177      552      10  1 2 311 2 <A 312 13
  178      553      11  1 2 312 C> 312 13
  179      554      12  1 2 312 2 A> 311 13
  180      565      23  1 2 312 2 111 A> 13
  181      566      22  1 2 312 2 111 <A 3 12
  182      577      11  1 2 312 2 <A 312 12
  183      578      12  1 2 313 C> 312 12
  184      579      13  1 2 313 2 A> 311 12
  185      590      24  1 2 313 2 111 A> 12
  186      591      23  1 2 313 2 111 <A 3 1
  187      602      12  1 2 313 2 <A 312 1
  188      603      13  1 2 314 C> 312 1
  189      604      14  1 2 314 2 A> 311 1
  190      615      25  1 2 314 2 111 A> 1
  191      616      24  1 2 314 2 111 <A 3
  192      627      13  1 2 314 2 <A 312
  193      628      14  1 2 315 C> 312
  194      629      15  1 2 315 2 A> 311
  195      640      26  1 2 315 2 111 A>
  196      641      27  1 2 315 2 112 B>
  197      642      28  1 2 315 2 112 2 C>
  198      643      27  1 2 315 2 112 2 <C 1
  199      644      26  1 2 315 2 112 <B 12
  200      645      25  1 2 315 2 111 <A 13

Lines:       201
Top steps:   200
Macro steps: 200
Basic steps: 645
Tape index:  25
nonzeros:    32
log10(nonzeros):    1.505
log10(steps   ):    2.810

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    nbs 4
    T 3-state 4-symbol #e (T.J. & S. Ligocki)
    : >2.1x10^628 >3.1x10^1256
    5T  1RB 3LA 3RC 1RA  2RC 1LA 1RH 2RB  1LC 1RB 1LB 2RA
    L 4
    M	201
    pref	sim
    machv Lig34_e  	just simple
    machv Lig34_e-r	with repetitions reduced
    machv Lig34_e-1	with tape symbol exponents
    machv Lig34_e-m	as 1-macro machine
    machv Lig34_e-a	as 1-macro machine with pure additive config-TRs
    iam	Lig34_e-m
    mtype	1
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:13:49 CEST 2010
    edate	Tue Jul  6 22:13:49 CEST 2010
    bnspeed	1
    short	7

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:13:49 CEST 2010
Ready: Tue Jul 6 22:13:49 CEST 2010