Comment: This TM produces >2.1x10^628 nonzeros in >3.1x10^1256 steps.
State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
A | 1RB | 3LA | 3RC | 1RA | 1 | right | B | 3 | left | A | 3 | right | C | 1 | right | A |
B | 2RC | 1LA | 1RH | 2RB | 2 | right | C | 1 | left | A | 1 | right | H | 2 | right | B |
C | 1LC | 1RB | 1LB | 2RA | 1 | left | C | 1 | right | B | 1 | left | B | 2 | right | A |
The same TM just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. Simulation is done as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Pushing initial machine. Pushing macro factor 1. Steps BasSteps BasTpos Tape contents 0 0 0 A> 1 1 1 1 B> 2 2 2 1 2 C> 3 3 1 1 2 <C 1 4 4 0 1 <B 12 5 5 -1 <A 13 6 6 0 1 B> 13 7 7 -1 1 <A 13 8 8 -2 <A 3 13 9 9 -1 1 B> 3 13 10 10 0 1 2 B> 13 11 11 -1 1 2 <A 13 12 12 0 1 3 C> 13 13 13 1 1 3 1 B> 12 14 14 0 1 3 1 <A 12 15 15 -1 1 3 <A 3 12 16 16 0 12 A> 3 12 17 17 1 13 A> 12 18 18 0 13 <A 3 1 19 21 -3 <A 34 1 20 22 -2 1 B> 34 1 21 26 2 1 24 B> 1 22 27 1 1 24 <A 1 23 28 2 1 23 3 C> 1 24 29 3 1 23 3 1 B> 25 30 4 1 23 3 1 2 C> 26 31 3 1 23 3 1 2 <C 1 27 32 2 1 23 3 1 <B 12 28 33 1 1 23 3 <A 13 29 34 2 1 23 1 A> 13 30 35 1 1 23 1 <A 3 12 31 36 0 1 23 <A 32 12 32 37 1 1 22 3 C> 32 12 33 38 2 1 22 3 2 A> 3 12 34 39 3 1 22 3 2 1 A> 12 35 40 2 1 22 3 2 1 <A 3 1 36 41 1 1 22 3 2 <A 32 1 37 42 2 1 22 32 C> 32 1 38 43 3 1 22 32 2 A> 3 1 39 44 4 1 22 32 2 1 A> 1 40 45 3 1 22 32 2 1 <A 3 41 46 2 1 22 32 2 <A 32 42 47 3 1 22 33 C> 32 43 48 4 1 22 33 2 A> 3 44 49 5 1 22 33 2 1 A> 45 50 6 1 22 33 2 12 B> 46 51 7 1 22 33 2 12 2 C> 47 52 6 1 22 33 2 12 2 <C 1 48 53 5 1 22 33 2 12 <B 12 49 54 4 1 22 33 2 1 <A 13 50 55 3 1 22 33 2 <A 3 13 51 56 4 1 22 34 C> 3 13 52 57 5 1 22 34 2 A> 13 53 58 4 1 22 34 2 <A 3 12 54 59 5 1 22 35 C> 3 12 55 60 6 1 22 35 2 A> 12 56 61 5 1 22 35 2 <A 3 1 57 62 6 1 22 36 C> 3 1 58 63 7 1 22 36 2 A> 1 59 64 6 1 22 36 2 <A 3 60 65 7 1 22 37 C> 3 61 66 8 1 22 37 2 A> 62 67 9 1 22 37 2 1 B> 63 68 10 1 22 37 2 1 2 C> 64 69 9 1 22 37 2 1 2 <C 1 65 70 8 1 22 37 2 1 <B 12 66 71 7 1 22 37 2 <A 13 67 72 8 1 22 38 C> 13 68 73 9 1 22 38 1 B> 12 69 74 8 1 22 38 1 <A 12 70 75 7 1 22 38 <A 3 12 71 76 8 1 22 37 1 A> 3 12 72 77 9 1 22 37 12 A> 12 73 78 8 1 22 37 12 <A 3 1 74 80 6 1 22 37 <A 33 1 75 81 7 1 22 36 1 A> 33 1 76 84 10 1 22 36 14 A> 1 77 85 9 1 22 36 14 <A 3 78 89 5 1 22 36 <A 35 79 90 6 1 22 35 1 A> 35 80 95 11 1 22 35 16 A> 81 96 12 1 22 35 17 B> 82 97 13 1 22 35 17 2 C> 83 98 12 1 22 35 17 2 <C 1 84 99 11 1 22 35 17 <B 12 85 100 10 1 22 35 16 <A 13 86 106 4 1 22 35 <A 36 13 87 107 5 1 22 34 1 A> 36 13 88 113 11 1 22 34 17 A> 13 89 114 10 1 22 34 17 <A 3 12 90 121 3 1 22 34 <A 38 12 91 122 4 1 22 33 1 A> 38 12 92 130 12 1 22 33 19 A> 12 93 131 11 1 22 33 19 <A 3 1 94 140 2 1 22 33 <A 310 1 95 141 3 1 22 32 1 A> 310 1 96 151 13 1 22 32 111 A> 1 97 152 12 1 22 32 111 <A 3 98 163 1 1 22 32 <A 312 99 164 2 1 22 3 1 A> 312 100 176 14 1 22 3 113 A> 101 177 15 1 22 3 114 B> 102 178 16 1 22 3 114 2 C> 103 179 15 1 22 3 114 2 <C 1 104 180 14 1 22 3 114 <B 12 105 181 13 1 22 3 113 <A 13 106 194 0 1 22 3 <A 313 13 107 195 1 1 22 1 A> 313 13 108 208 14 1 22 114 A> 13 109 209 13 1 22 114 <A 3 12 110 223 -1 1 22 <A 315 12 111 224 0 1 2 3 C> 315 12 112 225 1 1 2 3 2 A> 314 12 113 239 15 1 2 3 2 114 A> 12 114 240 14 1 2 3 2 114 <A 3 1 115 254 0 1 2 3 2 <A 315 1 116 255 1 1 2 32 C> 315 1 117 256 2 1 2 32 2 A> 314 1 118 270 16 1 2 32 2 114 A> 1 119 271 15 1 2 32 2 114 <A 3 120 285 1 1 2 32 2 <A 315 121 286 2 1 2 33 C> 315 122 287 3 1 2 33 2 A> 314 123 301 17 1 2 33 2 114 A> 124 302 18 1 2 33 2 115 B> 125 303 19 1 2 33 2 115 2 C> 126 304 18 1 2 33 2 115 2 <C 1 127 305 17 1 2 33 2 115 <B 12 128 306 16 1 2 33 2 114 <A 13 129 320 2 1 2 33 2 <A 314 13 130 321 3 1 2 34 C> 314 13 131 322 4 1 2 34 2 A> 313 13 132 335 17 1 2 34 2 113 A> 13 133 336 16 1 2 34 2 113 <A 3 12 134 349 3 1 2 34 2 <A 314 12 135 350 4 1 2 35 C> 314 12 136 351 5 1 2 35 2 A> 313 12 137 364 18 1 2 35 2 113 A> 12 138 365 17 1 2 35 2 113 <A 3 1 139 378 4 1 2 35 2 <A 314 1 140 379 5 1 2 36 C> 314 1 141 380 6 1 2 36 2 A> 313 1 142 393 19 1 2 36 2 113 A> 1 143 394 18 1 2 36 2 113 <A 3 144 407 5 1 2 36 2 <A 314 145 408 6 1 2 37 C> 314 146 409 7 1 2 37 2 A> 313 147 422 20 1 2 37 2 113 A> 148 423 21 1 2 37 2 114 B> 149 424 22 1 2 37 2 114 2 C> 150 425 21 1 2 37 2 114 2 <C 1 151 426 20 1 2 37 2 114 <B 12 152 427 19 1 2 37 2 113 <A 13 153 440 6 1 2 37 2 <A 313 13 154 441 7 1 2 38 C> 313 13 155 442 8 1 2 38 2 A> 312 13 156 454 20 1 2 38 2 112 A> 13 157 455 19 1 2 38 2 112 <A 3 12 158 467 7 1 2 38 2 <A 313 12 159 468 8 1 2 39 C> 313 12 160 469 9 1 2 39 2 A> 312 12 161 481 21 1 2 39 2 112 A> 12 162 482 20 1 2 39 2 112 <A 3 1 163 494 8 1 2 39 2 <A 313 1 164 495 9 1 2 310 C> 313 1 165 496 10 1 2 310 2 A> 312 1 166 508 22 1 2 310 2 112 A> 1 167 509 21 1 2 310 2 112 <A 3 168 521 9 1 2 310 2 <A 313 169 522 10 1 2 311 C> 313 170 523 11 1 2 311 2 A> 312 171 535 23 1 2 311 2 112 A> 172 536 24 1 2 311 2 113 B> 173 537 25 1 2 311 2 113 2 C> 174 538 24 1 2 311 2 113 2 <C 1 175 539 23 1 2 311 2 113 <B 12 176 540 22 1 2 311 2 112 <A 13 177 552 10 1 2 311 2 <A 312 13 178 553 11 1 2 312 C> 312 13 179 554 12 1 2 312 2 A> 311 13 180 565 23 1 2 312 2 111 A> 13 181 566 22 1 2 312 2 111 <A 3 12 182 577 11 1 2 312 2 <A 312 12 183 578 12 1 2 313 C> 312 12 184 579 13 1 2 313 2 A> 311 12 185 590 24 1 2 313 2 111 A> 12 186 591 23 1 2 313 2 111 <A 3 1 187 602 12 1 2 313 2 <A 312 1 188 603 13 1 2 314 C> 312 1 189 604 14 1 2 314 2 A> 311 1 190 615 25 1 2 314 2 111 A> 1 191 616 24 1 2 314 2 111 <A 3 192 627 13 1 2 314 2 <A 312 193 628 14 1 2 315 C> 312 194 629 15 1 2 315 2 A> 311 195 640 26 1 2 315 2 111 A> 196 641 27 1 2 315 2 112 B> 197 642 28 1 2 315 2 112 2 C> 198 643 27 1 2 315 2 112 2 <C 1 199 644 26 1 2 315 2 112 <B 12 200 645 25 1 2 315 2 111 <A 13 Lines: 201 Top steps: 200 Macro steps: 200 Basic steps: 645 Tape index: 25 nonzeros: 32 log10(nonzeros): 1.505 log10(steps ): 2.810
Input to awk program: gohalt 1 nbs 4 T 3-state 4-symbol #e (T.J. & S. Ligocki) : >2.1x10^628 >3.1x10^1256 5T 1RB 3LA 3RC 1RA 2RC 1LA 1RH 2RB 1LC 1RB 1LB 2RA L 4 M 201 pref sim machv Lig34_e just simple machv Lig34_e-r with repetitions reduced machv Lig34_e-1 with tape symbol exponents machv Lig34_e-m as 1-macro machine machv Lig34_e-a as 1-macro machine with pure additive config-TRs iam Lig34_e-m mtype 1 mmtyp 1 r 1 H 1 mac 0 E 2 sympr HM 1 date Tue Jul 6 22:13:49 CEST 2010 edate Tue Jul 6 22:13:49 CEST 2010 bnspeed 1 short 7Start: Tue Jul 6 22:13:49 CEST 2010
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;