Comment: This TM produces >2.1x10^628 nonzeros in >3.1x10^1256 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
A | 1RB | 3LA | 3RC | 1RA | 1 | right | B | 3 | left | A | 3 | right | C | 1 | right | A |
B | 2RC | 1LA | 1RH | 2RB | 2 | right | C | 1 | left | A | 1 | right | H | 2 | right | B |
C | 1LC | 1RB | 1LB | 2RA | 1 | left | C | 1 | right | B | 1 | left | B | 2 | right | A |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 2 1 2 C> 3 1 1 2 <C 1 4 0 1 <B 1 1 5 -1 <A 13 6 0 1 B> 13 7 -1 1 <A 13 8 -2 <A 3 13 9 -1 1 B> 3 13 10 0 1 2 B> 13 11 -1 1 2 <A 13 12 0 1 3 C> 13 13 1 1 3 1 B> 1 1 14 0 1 3 1 <A 1 1 15 -1 1 3 <A 3 1 1 16 0 1 1 A> 3 1 1 17 1 13 A> 1 1 18 0 13 <A 3 1 + 21 -3 <A 34 1 22 -2 1 B> 34 1 + 26 2 1 24 B> 1 27 1 1 24 <A 1 28 2 1 23 3 C> 1 29 3 1 23 3 1 B> 30 4 1 23 3 1 2 C> 31 3 1 23 3 1 2 <C 1 32 2 1 23 3 1 <B 1 1 33 1 1 23 3 <A 13 34 2 1 23 1 A> 13 35 1 1 23 1 <A 3 1 1 36 0 1 23 <A 3 3 1 1 37 1 1 2 2 3 C> 3 3 1 1 38 2 1 2 2 3 2 A> 3 1 1 39 3 1 2 2 3 2 1 A> 1 1 40 2 1 2 2 3 2 1 <A 3 1 41 1 1 2 2 3 2 <A 3 3 1 42 2 1 2 2 3 3 C> 3 3 1 43 3 1 2 2 3 3 2 A> 3 1 44 4 1 2 2 3 3 2 1 A> 1 45 3 1 2 2 3 3 2 1 <A 3 46 2 1 2 2 3 3 2 <A 3 3 47 3 1 2 2 33 C> 3 3 48 4 1 2 2 33 2 A> 3 49 5 1 2 2 33 2 1 A> 50 6 1 2 2 33 2 1 1 B> 51 7 1 2 2 33 2 1 1 2 C> 52 6 1 2 2 33 2 1 1 2 <C 1 53 5 1 2 2 33 2 1 1 <B 1 1 54 4 1 2 2 33 2 1 <A 13 55 3 1 2 2 33 2 <A 3 13 56 4 1 2 2 34 C> 3 13 57 5 1 2 2 34 2 A> 13 58 4 1 2 2 34 2 <A 3 1 1 59 5 1 2 2 35 C> 3 1 1 60 6 1 2 2 35 2 A> 1 1 61 5 1 2 2 35 2 <A 3 1 62 6 1 2 2 36 C> 3 1 63 7 1 2 2 36 2 A> 1 64 6 1 2 2 36 2 <A 3 65 7 1 2 2 37 C> 3 66 8 1 2 2 37 2 A> 67 9 1 2 2 37 2 1 B> 68 10 1 2 2 37 2 1 2 C> 69 9 1 2 2 37 2 1 2 <C 1 70 8 1 2 2 37 2 1 <B 1 1 71 7 1 2 2 37 2 <A 13 72 8 1 2 2 38 C> 13 73 9 1 2 2 38 1 B> 1 1 74 8 1 2 2 38 1 <A 1 1 75 7 1 2 2 38 <A 3 1 1 76 8 1 2 2 37 1 A> 3 1 1 77 9 1 2 2 37 1 1 A> 1 1 78 8 1 2 2 37 1 1 <A 3 1 + 80 6 1 2 2 37 <A 33 1 81 7 1 2 2 36 1 A> 33 1 + 84 10 1 2 2 36 14 A> 1 85 9 1 2 2 36 14 <A 3 + 89 5 1 2 2 36 <A 35 90 6 1 2 2 35 1 A> 35 + 95 11 1 2 2 35 16 A> 96 12 1 2 2 35 17 B> 97 13 1 2 2 35 17 2 C> 98 12 1 2 2 35 17 2 <C 1 99 11 1 2 2 35 17 <B 1 1 100 10 1 2 2 35 16 <A 13 + 106 4 1 2 2 35 <A 36 13 107 5 1 2 2 34 1 A> 36 13 + 113 11 1 2 2 34 17 A> 13 114 10 1 2 2 34 17 <A 3 1 1 + 121 3 1 2 2 34 <A 38 1 1 122 4 1 2 2 33 1 A> 38 1 1 + 130 12 1 2 2 33 19 A> 1 1 131 11 1 2 2 33 19 <A 3 1 + 140 2 1 2 2 33 <A 310 1 141 3 1 2 2 3 3 1 A> 310 1 + 151 13 1 2 2 3 3 111 A> 1 152 12 1 2 2 3 3 111 <A 3 + 163 1 1 2 2 3 3 <A 312 164 2 1 2 2 3 1 A> 312 + 176 14 1 2 2 3 113 A> 177 15 1 2 2 3 114 B> 178 16 1 2 2 3 114 2 C> 179 15 1 2 2 3 114 2 <C 1 180 14 1 2 2 3 114 <B 1 1 181 13 1 2 2 3 113 <A 13 + 194 0 1 2 2 3 <A 313 13 195 1 1 2 2 1 A> 313 13 + 208 14 1 2 2 114 A> 13 209 13 1 2 2 114 <A 3 1 1 + 223 -1 1 2 2 <A 315 1 1 224 0 1 2 3 C> 315 1 1 225 1 1 2 3 2 A> 314 1 1 + 239 15 1 2 3 2 114 A> 1 1 240 14 1 2 3 2 114 <A 3 1 + 254 0 1 2 3 2 <A 315 1 255 1 1 2 3 3 C> 315 1 256 2 1 2 3 3 2 A> 314 1 + 270 16 1 2 3 3 2 114 A> 1 271 15 1 2 3 3 2 114 <A 3 + 285 1 1 2 3 3 2 <A 315 286 2 1 2 33 C> 315 287 3 1 2 33 2 A> 314 + 301 17 1 2 33 2 114 A> 302 18 1 2 33 2 115 B> 303 19 1 2 33 2 115 2 C> 304 18 1 2 33 2 115 2 <C 1 305 17 1 2 33 2 115 <B 1 1 306 16 1 2 33 2 114 <A 13 + 320 2 1 2 33 2 <A 314 13 321 3 1 2 34 C> 314 13 322 4 1 2 34 2 A> 313 13 + 335 17 1 2 34 2 113 A> 13 336 16 1 2 34 2 113 <A 3 1 1 + 349 3 1 2 34 2 <A 314 1 1 350 4 1 2 35 C> 314 1 1 351 5 1 2 35 2 A> 313 1 1 + 364 18 1 2 35 2 113 A> 1 1 365 17 1 2 35 2 113 <A 3 1 + 378 4 1 2 35 2 <A 314 1 379 5 1 2 36 C> 314 1 380 6 1 2 36 2 A> 313 1 + 393 19 1 2 36 2 113 A> 1 394 18 1 2 36 2 113 <A 3 + 407 5 1 2 36 2 <A 314 408 6 1 2 37 C> 314 409 7 1 2 37 2 A> 313 + 422 20 1 2 37 2 113 A> 423 21 1 2 37 2 114 B> 424 22 1 2 37 2 114 2 C> 425 21 1 2 37 2 114 2 <C 1 426 20 1 2 37 2 114 <B 1 1 427 19 1 2 37 2 113 <A 13 + 440 6 1 2 37 2 <A 313 13 441 7 1 2 38 C> 313 13 442 8 1 2 38 2 A> 312 13 + 454 20 1 2 38 2 112 A> 13 455 19 1 2 38 2 112 <A 3 1 1 + 467 7 1 2 38 2 <A 313 1 1 468 8 1 2 39 C> 313 1 1 469 9 1 2 39 2 A> 312 1 1 + 481 21 1 2 39 2 112 A> 1 1 482 20 1 2 39 2 112 <A 3 1 + 494 8 1 2 39 2 <A 313 1 495 9 1 2 310 C> 313 1 496 10 1 2 310 2 A> 312 1 + 508 22 1 2 310 2 112 A> 1 509 21 1 2 310 2 112 <A 3 + 521 9 1 2 310 2 <A 313 522 10 1 2 311 C> 313 523 11 1 2 311 2 A> 312 + 535 23 1 2 311 2 112 A> 536 24 1 2 311 2 113 B> 537 25 1 2 311 2 113 2 C> 538 24 1 2 311 2 113 2 <C 1 539 23 1 2 311 2 113 <B 1 1 540 22 1 2 311 2 112 <A 13 + 552 10 1 2 311 2 <A 312 13 553 11 1 2 312 C> 312 13 554 12 1 2 312 2 A> 311 13 + 565 23 1 2 312 2 111 A> 13 566 22 1 2 312 2 111 <A 3 1 1 + 577 11 1 2 312 2 <A 312 1 1 578 12 1 2 313 C> 312 1 1 579 13 1 2 313 2 A> 311 1 1 + 590 24 1 2 313 2 111 A> 1 1 591 23 1 2 313 2 111 <A 3 1 + 602 12 1 2 313 2 <A 312 1 603 13 1 2 314 C> 312 1 604 14 1 2 314 2 A> 311 1 + 615 25 1 2 314 2 111 A> 1 616 24 1 2 314 2 111 <A 3 + 627 13 1 2 314 2 <A 312 628 14 1 2 315 C> 312 629 15 1 2 315 2 A> 311 + 640 26 1 2 315 2 111 A> 641 27 1 2 315 2 112 B> 642 28 1 2 315 2 112 2 C> 643 27 1 2 315 2 112 2 <C 1 644 26 1 2 315 2 112 <B 1 1 645 25 1 2 315 2 111 <A 13 After 645 steps (201 lines): state = A. Produced 32 nonzeros. Tape index 25, scanned [-3 .. 28].
State | Count | Execution count | First in step | ||||||
---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
A | 570 | 12 | 275 | 25 | 258 | 0 | 7 | 11 | 15 |
B | 30 | 10 | 15 | 5 | 1 | 4 | 9 | ||
C | 45 | 10 | 3 | 10 | 22 | 2 | 12 | 3 | 37 |