Comment: This TM produces >2.1x10^628 nonzeros in >3.1x10^1256 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
| A | 1RB | 3LA | 3RC | 1RA | 1 | right | B | 3 | left | A | 3 | right | C | 1 | right | A |
| B | 2RC | 1LA | 1RH | 2RB | 2 | right | C | 1 | left | A | 1 | right | H | 2 | right | B |
| C | 1LC | 1RB | 1LB | 2RA | 1 | left | C | 1 | right | B | 1 | left | B | 2 | right | A |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 2 1 2 C>
3 1 1 2 <C 1
4 0 1 <B 1 1
5 -1 <A 13
6 0 1 B> 13
7 -1 1 <A 13
8 -2 <A 3 13
9 -1 1 B> 3 13
10 0 1 2 B> 13
11 -1 1 2 <A 13
12 0 1 3 C> 13
13 1 1 3 1 B> 1 1
14 0 1 3 1 <A 1 1
15 -1 1 3 <A 3 1 1
16 0 1 1 A> 3 1 1
17 1 13 A> 1 1
18 0 13 <A 3 1
+ 21 -3 <A 34 1
22 -2 1 B> 34 1
+ 26 2 1 24 B> 1
27 1 1 24 <A 1
28 2 1 23 3 C> 1
29 3 1 23 3 1 B>
30 4 1 23 3 1 2 C>
31 3 1 23 3 1 2 <C 1
32 2 1 23 3 1 <B 1 1
33 1 1 23 3 <A 13
34 2 1 23 1 A> 13
35 1 1 23 1 <A 3 1 1
36 0 1 23 <A 3 3 1 1
37 1 1 2 2 3 C> 3 3 1 1
38 2 1 2 2 3 2 A> 3 1 1
39 3 1 2 2 3 2 1 A> 1 1
40 2 1 2 2 3 2 1 <A 3 1
41 1 1 2 2 3 2 <A 3 3 1
42 2 1 2 2 3 3 C> 3 3 1
43 3 1 2 2 3 3 2 A> 3 1
44 4 1 2 2 3 3 2 1 A> 1
45 3 1 2 2 3 3 2 1 <A 3
46 2 1 2 2 3 3 2 <A 3 3
47 3 1 2 2 33 C> 3 3
48 4 1 2 2 33 2 A> 3
49 5 1 2 2 33 2 1 A>
50 6 1 2 2 33 2 1 1 B>
51 7 1 2 2 33 2 1 1 2 C>
52 6 1 2 2 33 2 1 1 2 <C 1
53 5 1 2 2 33 2 1 1 <B 1 1
54 4 1 2 2 33 2 1 <A 13
55 3 1 2 2 33 2 <A 3 13
56 4 1 2 2 34 C> 3 13
57 5 1 2 2 34 2 A> 13
58 4 1 2 2 34 2 <A 3 1 1
59 5 1 2 2 35 C> 3 1 1
60 6 1 2 2 35 2 A> 1 1
61 5 1 2 2 35 2 <A 3 1
62 6 1 2 2 36 C> 3 1
63 7 1 2 2 36 2 A> 1
64 6 1 2 2 36 2 <A 3
65 7 1 2 2 37 C> 3
66 8 1 2 2 37 2 A>
67 9 1 2 2 37 2 1 B>
68 10 1 2 2 37 2 1 2 C>
69 9 1 2 2 37 2 1 2 <C 1
70 8 1 2 2 37 2 1 <B 1 1
71 7 1 2 2 37 2 <A 13
72 8 1 2 2 38 C> 13
73 9 1 2 2 38 1 B> 1 1
74 8 1 2 2 38 1 <A 1 1
75 7 1 2 2 38 <A 3 1 1
76 8 1 2 2 37 1 A> 3 1 1
77 9 1 2 2 37 1 1 A> 1 1
78 8 1 2 2 37 1 1 <A 3 1
+ 80 6 1 2 2 37 <A 33 1
81 7 1 2 2 36 1 A> 33 1
+ 84 10 1 2 2 36 14 A> 1
85 9 1 2 2 36 14 <A 3
+ 89 5 1 2 2 36 <A 35
90 6 1 2 2 35 1 A> 35
+ 95 11 1 2 2 35 16 A>
96 12 1 2 2 35 17 B>
97 13 1 2 2 35 17 2 C>
98 12 1 2 2 35 17 2 <C 1
99 11 1 2 2 35 17 <B 1 1
100 10 1 2 2 35 16 <A 13
+ 106 4 1 2 2 35 <A 36 13
107 5 1 2 2 34 1 A> 36 13
+ 113 11 1 2 2 34 17 A> 13
114 10 1 2 2 34 17 <A 3 1 1
+ 121 3 1 2 2 34 <A 38 1 1
122 4 1 2 2 33 1 A> 38 1 1
+ 130 12 1 2 2 33 19 A> 1 1
131 11 1 2 2 33 19 <A 3 1
+ 140 2 1 2 2 33 <A 310 1
141 3 1 2 2 3 3 1 A> 310 1
+ 151 13 1 2 2 3 3 111 A> 1
152 12 1 2 2 3 3 111 <A 3
+ 163 1 1 2 2 3 3 <A 312
164 2 1 2 2 3 1 A> 312
+ 176 14 1 2 2 3 113 A>
177 15 1 2 2 3 114 B>
178 16 1 2 2 3 114 2 C>
179 15 1 2 2 3 114 2 <C 1
180 14 1 2 2 3 114 <B 1 1
181 13 1 2 2 3 113 <A 13
+ 194 0 1 2 2 3 <A 313 13
195 1 1 2 2 1 A> 313 13
+ 208 14 1 2 2 114 A> 13
209 13 1 2 2 114 <A 3 1 1
+ 223 -1 1 2 2 <A 315 1 1
224 0 1 2 3 C> 315 1 1
225 1 1 2 3 2 A> 314 1 1
+ 239 15 1 2 3 2 114 A> 1 1
240 14 1 2 3 2 114 <A 3 1
+ 254 0 1 2 3 2 <A 315 1
255 1 1 2 3 3 C> 315 1
256 2 1 2 3 3 2 A> 314 1
+ 270 16 1 2 3 3 2 114 A> 1
271 15 1 2 3 3 2 114 <A 3
+ 285 1 1 2 3 3 2 <A 315
286 2 1 2 33 C> 315
287 3 1 2 33 2 A> 314
+ 301 17 1 2 33 2 114 A>
302 18 1 2 33 2 115 B>
303 19 1 2 33 2 115 2 C>
304 18 1 2 33 2 115 2 <C 1
305 17 1 2 33 2 115 <B 1 1
306 16 1 2 33 2 114 <A 13
+ 320 2 1 2 33 2 <A 314 13
321 3 1 2 34 C> 314 13
322 4 1 2 34 2 A> 313 13
+ 335 17 1 2 34 2 113 A> 13
336 16 1 2 34 2 113 <A 3 1 1
+ 349 3 1 2 34 2 <A 314 1 1
350 4 1 2 35 C> 314 1 1
351 5 1 2 35 2 A> 313 1 1
+ 364 18 1 2 35 2 113 A> 1 1
365 17 1 2 35 2 113 <A 3 1
+ 378 4 1 2 35 2 <A 314 1
379 5 1 2 36 C> 314 1
380 6 1 2 36 2 A> 313 1
+ 393 19 1 2 36 2 113 A> 1
394 18 1 2 36 2 113 <A 3
+ 407 5 1 2 36 2 <A 314
408 6 1 2 37 C> 314
409 7 1 2 37 2 A> 313
+ 422 20 1 2 37 2 113 A>
423 21 1 2 37 2 114 B>
424 22 1 2 37 2 114 2 C>
425 21 1 2 37 2 114 2 <C 1
426 20 1 2 37 2 114 <B 1 1
427 19 1 2 37 2 113 <A 13
+ 440 6 1 2 37 2 <A 313 13
441 7 1 2 38 C> 313 13
442 8 1 2 38 2 A> 312 13
+ 454 20 1 2 38 2 112 A> 13
455 19 1 2 38 2 112 <A 3 1 1
+ 467 7 1 2 38 2 <A 313 1 1
468 8 1 2 39 C> 313 1 1
469 9 1 2 39 2 A> 312 1 1
+ 481 21 1 2 39 2 112 A> 1 1
482 20 1 2 39 2 112 <A 3 1
+ 494 8 1 2 39 2 <A 313 1
495 9 1 2 310 C> 313 1
496 10 1 2 310 2 A> 312 1
+ 508 22 1 2 310 2 112 A> 1
509 21 1 2 310 2 112 <A 3
+ 521 9 1 2 310 2 <A 313
522 10 1 2 311 C> 313
523 11 1 2 311 2 A> 312
+ 535 23 1 2 311 2 112 A>
536 24 1 2 311 2 113 B>
537 25 1 2 311 2 113 2 C>
538 24 1 2 311 2 113 2 <C 1
539 23 1 2 311 2 113 <B 1 1
540 22 1 2 311 2 112 <A 13
+ 552 10 1 2 311 2 <A 312 13
553 11 1 2 312 C> 312 13
554 12 1 2 312 2 A> 311 13
+ 565 23 1 2 312 2 111 A> 13
566 22 1 2 312 2 111 <A 3 1 1
+ 577 11 1 2 312 2 <A 312 1 1
578 12 1 2 313 C> 312 1 1
579 13 1 2 313 2 A> 311 1 1
+ 590 24 1 2 313 2 111 A> 1 1
591 23 1 2 313 2 111 <A 3 1
+ 602 12 1 2 313 2 <A 312 1
603 13 1 2 314 C> 312 1
604 14 1 2 314 2 A> 311 1
+ 615 25 1 2 314 2 111 A> 1
616 24 1 2 314 2 111 <A 3
+ 627 13 1 2 314 2 <A 312
628 14 1 2 315 C> 312
629 15 1 2 315 2 A> 311
+ 640 26 1 2 315 2 111 A>
641 27 1 2 315 2 112 B>
642 28 1 2 315 2 112 2 C>
643 27 1 2 315 2 112 2 <C 1
644 26 1 2 315 2 112 <B 1 1
645 25 1 2 315 2 111 <A 13
After 645 steps (201 lines): state = A.
Produced 32 nonzeros.
Tape index 25, scanned [-3 .. 28].
| State | Count | Execution count | First in step | ||||||
|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
| A | 570 | 12 | 275 | 25 | 258 | 0 | 7 | 11 | 15 |
| B | 30 | 10 | 15 | 5 | 1 | 4 | 9 | ||
| C | 45 | 10 | 3 | 10 | 22 | 2 | 12 | 3 | 37 |