3-state 4-symbol #e (T.J. & S. Ligocki)

Comment: This TM produces >2.1x10^628 nonzeros in >3.1x10^1256 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on 0 on 1 on 2 on 3
Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 3LA 3RC 1RA 1 right B 3 left A 3 right C 1 right A
B 2RC 1LA 1RH 2RB 2 right C 1 left A 1 right H 2 right B
C 1LC 1RB 1LB 2RA 1 left C 1 right B 1 left B 2 right A
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     2  1 2 C>
     3     1  1 2 <C 1
     4     0  1 <B 1 1
     5    -1  <A 13
     6     0  1 B> 13
     7    -1  1 <A 13
     8    -2  <A 3 13
     9    -1  1 B> 3 13
    10     0  1 2 B> 13
    11    -1  1 2 <A 13
    12     0  1 3 C> 13
    13     1  1 3 1 B> 1 1
    14     0  1 3 1 <A 1 1
    15    -1  1 3 <A 3 1 1
    16     0  1 1 A> 3 1 1
    17     1  13 A> 1 1
    18     0  13 <A 3 1
+   21    -3  <A 34 1
    22    -2  1 B> 34 1
+   26     2  1 24 B> 1
    27     1  1 24 <A 1
    28     2  1 23 3 C> 1
    29     3  1 23 3 1 B>
    30     4  1 23 3 1 2 C>
    31     3  1 23 3 1 2 <C 1
    32     2  1 23 3 1 <B 1 1
    33     1  1 23 3 <A 13
    34     2  1 23 1 A> 13
    35     1  1 23 1 <A 3 1 1
    36     0  1 23 <A 3 3 1 1
    37     1  1 2 2 3 C> 3 3 1 1
    38     2  1 2 2 3 2 A> 3 1 1
    39     3  1 2 2 3 2 1 A> 1 1
    40     2  1 2 2 3 2 1 <A 3 1
    41     1  1 2 2 3 2 <A 3 3 1
    42     2  1 2 2 3 3 C> 3 3 1
    43     3  1 2 2 3 3 2 A> 3 1
    44     4  1 2 2 3 3 2 1 A> 1
    45     3  1 2 2 3 3 2 1 <A 3
    46     2  1 2 2 3 3 2 <A 3 3
    47     3  1 2 2 33 C> 3 3
    48     4  1 2 2 33 2 A> 3
    49     5  1 2 2 33 2 1 A>
    50     6  1 2 2 33 2 1 1 B>
    51     7  1 2 2 33 2 1 1 2 C>
    52     6  1 2 2 33 2 1 1 2 <C 1
    53     5  1 2 2 33 2 1 1 <B 1 1
    54     4  1 2 2 33 2 1 <A 13
    55     3  1 2 2 33 2 <A 3 13
    56     4  1 2 2 34 C> 3 13
    57     5  1 2 2 34 2 A> 13
    58     4  1 2 2 34 2 <A 3 1 1
    59     5  1 2 2 35 C> 3 1 1
    60     6  1 2 2 35 2 A> 1 1
    61     5  1 2 2 35 2 <A 3 1
    62     6  1 2 2 36 C> 3 1
    63     7  1 2 2 36 2 A> 1
    64     6  1 2 2 36 2 <A 3
    65     7  1 2 2 37 C> 3
    66     8  1 2 2 37 2 A>
    67     9  1 2 2 37 2 1 B>
    68    10  1 2 2 37 2 1 2 C>
    69     9  1 2 2 37 2 1 2 <C 1
    70     8  1 2 2 37 2 1 <B 1 1
    71     7  1 2 2 37 2 <A 13
    72     8  1 2 2 38 C> 13
    73     9  1 2 2 38 1 B> 1 1
    74     8  1 2 2 38 1 <A 1 1
    75     7  1 2 2 38 <A 3 1 1
    76     8  1 2 2 37 1 A> 3 1 1
    77     9  1 2 2 37 1 1 A> 1 1
    78     8  1 2 2 37 1 1 <A 3 1
+   80     6  1 2 2 37 <A 33 1
    81     7  1 2 2 36 1 A> 33 1
+   84    10  1 2 2 36 14 A> 1
    85     9  1 2 2 36 14 <A 3
+   89     5  1 2 2 36 <A 35
    90     6  1 2 2 35 1 A> 35
+   95    11  1 2 2 35 16 A>
    96    12  1 2 2 35 17 B>
    97    13  1 2 2 35 17 2 C>
    98    12  1 2 2 35 17 2 <C 1
    99    11  1 2 2 35 17 <B 1 1
   100    10  1 2 2 35 16 <A 13
+  106     4  1 2 2 35 <A 36 13
   107     5  1 2 2 34 1 A> 36 13
+  113    11  1 2 2 34 17 A> 13
   114    10  1 2 2 34 17 <A 3 1 1
+  121     3  1 2 2 34 <A 38 1 1
   122     4  1 2 2 33 1 A> 38 1 1
+  130    12  1 2 2 33 19 A> 1 1
   131    11  1 2 2 33 19 <A 3 1
+  140     2  1 2 2 33 <A 310 1
   141     3  1 2 2 3 3 1 A> 310 1
+  151    13  1 2 2 3 3 111 A> 1
   152    12  1 2 2 3 3 111 <A 3
+  163     1  1 2 2 3 3 <A 312
   164     2  1 2 2 3 1 A> 312
+  176    14  1 2 2 3 113 A>
   177    15  1 2 2 3 114 B>
   178    16  1 2 2 3 114 2 C>
   179    15  1 2 2 3 114 2 <C 1
   180    14  1 2 2 3 114 <B 1 1
   181    13  1 2 2 3 113 <A 13
+  194     0  1 2 2 3 <A 313 13
   195     1  1 2 2 1 A> 313 13
+  208    14  1 2 2 114 A> 13
   209    13  1 2 2 114 <A 3 1 1
+  223    -1  1 2 2 <A 315 1 1
   224     0  1 2 3 C> 315 1 1
   225     1  1 2 3 2 A> 314 1 1
+  239    15  1 2 3 2 114 A> 1 1
   240    14  1 2 3 2 114 <A 3 1
+  254     0  1 2 3 2 <A 315 1
   255     1  1 2 3 3 C> 315 1
   256     2  1 2 3 3 2 A> 314 1
+  270    16  1 2 3 3 2 114 A> 1
   271    15  1 2 3 3 2 114 <A 3
+  285     1  1 2 3 3 2 <A 315
   286     2  1 2 33 C> 315
   287     3  1 2 33 2 A> 314
+  301    17  1 2 33 2 114 A>
   302    18  1 2 33 2 115 B>
   303    19  1 2 33 2 115 2 C>
   304    18  1 2 33 2 115 2 <C 1
   305    17  1 2 33 2 115 <B 1 1
   306    16  1 2 33 2 114 <A 13
+  320     2  1 2 33 2 <A 314 13
   321     3  1 2 34 C> 314 13
   322     4  1 2 34 2 A> 313 13
+  335    17  1 2 34 2 113 A> 13
   336    16  1 2 34 2 113 <A 3 1 1
+  349     3  1 2 34 2 <A 314 1 1
   350     4  1 2 35 C> 314 1 1
   351     5  1 2 35 2 A> 313 1 1
+  364    18  1 2 35 2 113 A> 1 1
   365    17  1 2 35 2 113 <A 3 1
+  378     4  1 2 35 2 <A 314 1
   379     5  1 2 36 C> 314 1
   380     6  1 2 36 2 A> 313 1
+  393    19  1 2 36 2 113 A> 1
   394    18  1 2 36 2 113 <A 3
+  407     5  1 2 36 2 <A 314
   408     6  1 2 37 C> 314
   409     7  1 2 37 2 A> 313
+  422    20  1 2 37 2 113 A>
   423    21  1 2 37 2 114 B>
   424    22  1 2 37 2 114 2 C>
   425    21  1 2 37 2 114 2 <C 1
   426    20  1 2 37 2 114 <B 1 1
   427    19  1 2 37 2 113 <A 13
+  440     6  1 2 37 2 <A 313 13
   441     7  1 2 38 C> 313 13
   442     8  1 2 38 2 A> 312 13
+  454    20  1 2 38 2 112 A> 13
   455    19  1 2 38 2 112 <A 3 1 1
+  467     7  1 2 38 2 <A 313 1 1
   468     8  1 2 39 C> 313 1 1
   469     9  1 2 39 2 A> 312 1 1
+  481    21  1 2 39 2 112 A> 1 1
   482    20  1 2 39 2 112 <A 3 1
+  494     8  1 2 39 2 <A 313 1
   495     9  1 2 310 C> 313 1
   496    10  1 2 310 2 A> 312 1
+  508    22  1 2 310 2 112 A> 1
   509    21  1 2 310 2 112 <A 3
+  521     9  1 2 310 2 <A 313
   522    10  1 2 311 C> 313
   523    11  1 2 311 2 A> 312
+  535    23  1 2 311 2 112 A>
   536    24  1 2 311 2 113 B>
   537    25  1 2 311 2 113 2 C>
   538    24  1 2 311 2 113 2 <C 1
   539    23  1 2 311 2 113 <B 1 1
   540    22  1 2 311 2 112 <A 13
+  552    10  1 2 311 2 <A 312 13
   553    11  1 2 312 C> 312 13
   554    12  1 2 312 2 A> 311 13
+  565    23  1 2 312 2 111 A> 13
   566    22  1 2 312 2 111 <A 3 1 1
+  577    11  1 2 312 2 <A 312 1 1
   578    12  1 2 313 C> 312 1 1
   579    13  1 2 313 2 A> 311 1 1
+  590    24  1 2 313 2 111 A> 1 1
   591    23  1 2 313 2 111 <A 3 1
+  602    12  1 2 313 2 <A 312 1
   603    13  1 2 314 C> 312 1
   604    14  1 2 314 2 A> 311 1
+  615    25  1 2 314 2 111 A> 1
   616    24  1 2 314 2 111 <A 3
+  627    13  1 2 314 2 <A 312
   628    14  1 2 315 C> 312
   629    15  1 2 315 2 A> 311
+  640    26  1 2 315 2 111 A>
   641    27  1 2 315 2 112 B>
   642    28  1 2 315 2 112 2 C>
   643    27  1 2 315 2 112 2 <C 1
   644    26  1 2 315 2 112 <B 1 1
   645    25  1 2 315 2 111 <A 13

After 645 steps (201 lines): state = A.
Produced     32 nonzeros.
Tape index 25, scanned [-3 .. 28].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 0 on 1 on 2 on 3
A 570 12 275 25 258 0 7 11 15
B 30 10 15   5 1 4   9
C 45 10 3 10 22 2 12 3 37
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:13:49 CEST 2010