3-state 4-symbol formerly best (T.J. & S. Ligocki)

Comment: This TM produces >6.0x10^140 nonzeros in >4.3x10^281 steps.

State on
0
on
1
on
2
on
3
on 0 on 1 on 2 on 3
Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 3RB 2LC 3LA 1 right B 3 right B 2 left C 3 left A
B 0RC 1RH 2RC 1LB 0 right C 1 right H 2 right C 1 left B
C 1LB 2LA 3RC 2LC 1 left B 2 left A 3 right C 2 left C
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing macro factor 1.

Steps BasSteps BasTpos  Tape contents
    0        0       0  A>
    1        1       1  1 B>
    2        2       2  1 0 C>
    3        3       1  1 0 <B 1
    4        4       2  1 0 C> 1
    5        5       1  1 0 <A 2
    6        6       2  12 B> 2
    7        7       3  12 2 C>
    8        8       2  12 2 <B 1
    9        9       3  12 2 C> 1
   10       10       2  12 2 <A 2
   11       11       1  12 <C 22
   12       12       0  1 <A 23
   13       13       1  3 B> 23
   14       14       2  3 2 C> 22
   15       16       4  3 2 32 C>
   16       17       3  3 2 32 <B 1
   17       19       1  3 2 <B 13
   18       20       2  3 2 C> 13
   19       21       1  3 2 <A 2 12
   20       22       0  3 <C 22 12
   21       23      -1  <C 23 12
   22       24      -2  <B 1 23 12
   23       25      -1  C> 1 23 12
   24       26      -2  <A 24 12
   25       27      -1  1 B> 24 12
   26       28       0  1 2 C> 23 12
   27       31       3  1 2 33 C> 12
   28       32       2  1 2 33 <A 2 1
   29       35      -1  1 2 <A 33 2 1
   30       36      -2  1 <C 2 33 2 1
   31       37      -3  <A 22 33 2 1
   32       38      -2  1 B> 22 33 2 1
   33       39      -1  1 2 C> 2 33 2 1
   34       40       0  1 2 3 C> 33 2 1
   35       41      -1  1 2 3 <C 2 32 2 1
   36       42      -2  1 2 <C 22 32 2 1
   37       43      -1  1 3 C> 22 32 2 1
   38       45       1  1 33 C> 32 2 1
   39       46       0  1 33 <C 2 3 2 1
   40       49      -3  1 <C 24 3 2 1
   41       50      -4  <A 25 3 2 1
   42       51      -3  1 B> 25 3 2 1
   43       52      -2  1 2 C> 24 3 2 1
   44       56       2  1 2 34 C> 3 2 1
   45       57       1  1 2 34 <C 22 1
   46       61      -3  1 2 <C 26 1
   47       62      -2  1 3 C> 26 1
   48       68       4  1 37 C> 1
   49       69       3  1 37 <A 2
   50       76      -4  1 <A 37 2
   51       77      -3  3 B> 37 2
   52       78      -4  3 <B 1 36 2
   53       79      -5  <B 12 36 2
   54       80      -4  C> 12 36 2
   55       81      -5  <A 2 1 36 2
   56       82      -4  1 B> 2 1 36 2
   57       83      -3  1 2 C> 1 36 2
   58       84      -4  1 2 <A 2 36 2
   59       85      -5  1 <C 22 36 2
   60       86      -6  <A 23 36 2
   61       87      -5  1 B> 23 36 2
   62       88      -4  1 2 C> 22 36 2
   63       90      -2  1 2 32 C> 36 2
   64       91      -3  1 2 32 <C 2 35 2
   65       93      -5  1 2 <C 23 35 2
   66       94      -4  1 3 C> 23 35 2
   67       97      -1  1 34 C> 35 2
   68       98      -2  1 34 <C 2 34 2
   69      102      -6  1 <C 25 34 2
   70      103      -7  <A 26 34 2
   71      104      -6  1 B> 26 34 2
   72      105      -5  1 2 C> 25 34 2
   73      110       0  1 2 35 C> 34 2
   74      111      -1  1 2 35 <C 2 33 2
   75      116      -6  1 2 <C 26 33 2
   76      117      -5  1 3 C> 26 33 2
   77      123       1  1 37 C> 33 2
   78      124       0  1 37 <C 2 32 2
   79      131      -7  1 <C 28 32 2
   80      132      -8  <A 29 32 2
   81      133      -7  1 B> 29 32 2
   82      134      -6  1 2 C> 28 32 2
   83      142       2  1 2 38 C> 32 2
   84      143       1  1 2 38 <C 2 3 2
   85      151      -7  1 2 <C 29 3 2
   86      152      -6  1 3 C> 29 3 2
   87      161       3  1 310 C> 3 2
   88      162       2  1 310 <C 22
   89      172      -8  1 <C 212
   90      173      -9  <A 213
   91      174      -8  1 B> 213
   92      175      -7  1 2 C> 212
   93      187       5  1 2 312 C>
   94      188       4  1 2 312 <B 1
   95      200      -8  1 2 <B 113
   96      201      -7  1 2 C> 113
   97      202      -8  1 2 <A 2 112
   98      203      -9  1 <C 22 112
   99      204     -10  <A 23 112
  100      205      -9  1 B> 23 112
  101      206      -8  1 2 C> 22 112
  102      208      -6  1 2 32 C> 112
  103      209      -7  1 2 32 <A 2 111
  104      211      -9  1 2 <A 32 2 111
  105      212     -10  1 <C 2 32 2 111
  106      213     -11  <A 22 32 2 111
  107      214     -10  1 B> 22 32 2 111
  108      215      -9  1 2 C> 2 32 2 111
  109      216      -8  1 2 3 C> 32 2 111
  110      217      -9  1 2 3 <C 2 3 2 111
  111      218     -10  1 2 <C 22 3 2 111
  112      219      -9  1 3 C> 22 3 2 111
  113      221      -7  1 33 C> 3 2 111
  114      222      -8  1 33 <C 22 111
  115      225     -11  1 <C 25 111
  116      226     -12  <A 26 111
  117      227     -11  1 B> 26 111
  118      228     -10  1 2 C> 25 111
  119      233      -5  1 2 35 C> 111
  120      234      -6  1 2 35 <A 2 110
  121      239     -11  1 2 <A 35 2 110
  122      240     -12  1 <C 2 35 2 110
  123      241     -13  <A 22 35 2 110
  124      242     -12  1 B> 22 35 2 110
  125      243     -11  1 2 C> 2 35 2 110
  126      244     -10  1 2 3 C> 35 2 110
  127      245     -11  1 2 3 <C 2 34 2 110
  128      246     -12  1 2 <C 22 34 2 110
  129      247     -11  1 3 C> 22 34 2 110
  130      249      -9  1 33 C> 34 2 110
  131      250     -10  1 33 <C 2 33 2 110
  132      253     -13  1 <C 24 33 2 110
  133      254     -14  <A 25 33 2 110
  134      255     -13  1 B> 25 33 2 110
  135      256     -12  1 2 C> 24 33 2 110
  136      260      -8  1 2 34 C> 33 2 110
  137      261      -9  1 2 34 <C 2 32 2 110
  138      265     -13  1 2 <C 25 32 2 110
  139      266     -12  1 3 C> 25 32 2 110
  140      271      -7  1 36 C> 32 2 110
  141      272      -8  1 36 <C 2 3 2 110
  142      278     -14  1 <C 27 3 2 110
  143      279     -15  <A 28 3 2 110
  144      280     -14  1 B> 28 3 2 110
  145      281     -13  1 2 C> 27 3 2 110
  146      288      -6  1 2 37 C> 3 2 110
  147      289      -7  1 2 37 <C 22 110
  148      296     -14  1 2 <C 29 110
  149      297     -13  1 3 C> 29 110
  150      306      -4  1 310 C> 110
  151      307      -5  1 310 <A 2 19
  152      317     -15  1 <A 310 2 19
  153      318     -14  3 B> 310 2 19
  154      319     -15  3 <B 1 39 2 19
  155      320     -16  <B 12 39 2 19
  156      321     -15  C> 12 39 2 19
  157      322     -16  <A 2 1 39 2 19
  158      323     -15  1 B> 2 1 39 2 19
  159      324     -14  1 2 C> 1 39 2 19
  160      325     -15  1 2 <A 2 39 2 19
  161      326     -16  1 <C 22 39 2 19
  162      327     -17  <A 23 39 2 19
  163      328     -16  1 B> 23 39 2 19
  164      329     -15  1 2 C> 22 39 2 19
  165      331     -13  1 2 32 C> 39 2 19
  166      332     -14  1 2 32 <C 2 38 2 19
  167      334     -16  1 2 <C 23 38 2 19
  168      335     -15  1 3 C> 23 38 2 19
  169      338     -12  1 34 C> 38 2 19
  170      339     -13  1 34 <C 2 37 2 19
  171      343     -17  1 <C 25 37 2 19
  172      344     -18  <A 26 37 2 19
  173      345     -17  1 B> 26 37 2 19
  174      346     -16  1 2 C> 25 37 2 19
  175      351     -11  1 2 35 C> 37 2 19
  176      352     -12  1 2 35 <C 2 36 2 19
  177      357     -17  1 2 <C 26 36 2 19
  178      358     -16  1 3 C> 26 36 2 19
  179      364     -10  1 37 C> 36 2 19
  180      365     -11  1 37 <C 2 35 2 19
  181      372     -18  1 <C 28 35 2 19
  182      373     -19  <A 29 35 2 19
  183      374     -18  1 B> 29 35 2 19
  184      375     -17  1 2 C> 28 35 2 19
  185      383      -9  1 2 38 C> 35 2 19
  186      384     -10  1 2 38 <C 2 34 2 19
  187      392     -18  1 2 <C 29 34 2 19
  188      393     -17  1 3 C> 29 34 2 19
  189      402      -8  1 310 C> 34 2 19
  190      403      -9  1 310 <C 2 33 2 19
  191      413     -19  1 <C 211 33 2 19
  192      414     -20  <A 212 33 2 19
  193      415     -19  1 B> 212 33 2 19
  194      416     -18  1 2 C> 211 33 2 19
  195      427      -7  1 2 311 C> 33 2 19
  196      428      -8  1 2 311 <C 2 32 2 19
  197      439     -19  1 2 <C 212 32 2 19
  198      440     -18  1 3 C> 212 32 2 19
  199      452      -6  1 313 C> 32 2 19
  200      453      -7  1 313 <C 2 3 2 19

Lines:       201
Top steps:   200
Macro steps: 200
Basic steps: 453
Tape index:  -7
nonzeros:    26
log10(nonzeros):    1.415
log10(steps   ):    2.656

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    nbs 4
    T 3-state 4-symbol formerly best (T.J. & S. Ligocki)
    : >6.0x10^140 >4.3x10^281
    5T  1RB 3RB 2LC 3LA  0RC 1RH 2RC 1LB  1LB 2LA 3RC 2LC
    L 26
    M	201
    pref	sim
    machv Lig34_c  	just simple
    machv Lig34_c-r	with repetitions reduced
    machv Lig34_c-1	with tape symbol exponents
    machv Lig34_c-m	as 1-macro machine
    machv Lig34_c-a	as 1-macro machine with pure additive config-TRs
    iam	Lig34_c-m
    mtype	1
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:13:35 CEST 2010
    edate	Tue Jul  6 22:13:35 CEST 2010
    bnspeed	1
    short	7

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:13:35 CEST 2010
Ready: Tue Jul 6 22:13:35 CEST 2010