Comment: This TM produces >6.0x10^140 nonzeros in >4.3x10^281 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
| A | 1RB | 3RB | 2LC | 3LA | 1 | right | B | 3 | right | B | 2 | left | C | 3 | left | A |
| B | 0RC | 1RH | 2RC | 1LB | 0 | right | C | 1 | right | H | 2 | right | C | 1 | left | B |
| C | 1LB | 2LA | 3RC | 2LC | 1 | left | B | 2 | left | A | 3 | right | C | 2 | left | C |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 2 1 0 C>
3 1 1 0 <B 1
4 2 1 0 C> 1
5 1 1 0 <A 2
6 2 1 1 B> 2
7 3 1 1 2 C>
8 2 1 1 2 <B 1
9 3 1 1 2 C> 1
10 2 1 1 2 <A 2
11 1 1 1 <C 2 2
12 0 1 <A 23
13 1 3 B> 23
14 2 3 2 C> 2 2
+ 16 4 3 2 3 3 C>
17 3 3 2 3 3 <B 1
+ 19 1 3 2 <B 13
20 2 3 2 C> 13
21 1 3 2 <A 2 1 1
22 0 3 <C 2 2 1 1
23 -1 <C 23 1 1
24 -2 <B 1 23 1 1
25 -1 C> 1 23 1 1
26 -2 <A 24 1 1
27 -1 1 B> 24 1 1
28 0 1 2 C> 23 1 1
+ 31 3 1 2 33 C> 1 1
32 2 1 2 33 <A 2 1
+ 35 -1 1 2 <A 33 2 1
36 -2 1 <C 2 33 2 1
37 -3 <A 2 2 33 2 1
38 -2 1 B> 2 2 33 2 1
39 -1 1 2 C> 2 33 2 1
40 0 1 2 3 C> 33 2 1
41 -1 1 2 3 <C 2 3 3 2 1
42 -2 1 2 <C 2 2 3 3 2 1
43 -1 1 3 C> 2 2 3 3 2 1
+ 45 1 1 33 C> 3 3 2 1
46 0 1 33 <C 2 3 2 1
+ 49 -3 1 <C 24 3 2 1
50 -4 <A 25 3 2 1
51 -3 1 B> 25 3 2 1
52 -2 1 2 C> 24 3 2 1
+ 56 2 1 2 34 C> 3 2 1
57 1 1 2 34 <C 2 2 1
+ 61 -3 1 2 <C 26 1
62 -2 1 3 C> 26 1
+ 68 4 1 37 C> 1
69 3 1 37 <A 2
+ 76 -4 1 <A 37 2
77 -3 3 B> 37 2
78 -4 3 <B 1 36 2
79 -5 <B 1 1 36 2
80 -4 C> 1 1 36 2
81 -5 <A 2 1 36 2
82 -4 1 B> 2 1 36 2
83 -3 1 2 C> 1 36 2
84 -4 1 2 <A 2 36 2
85 -5 1 <C 2 2 36 2
86 -6 <A 23 36 2
87 -5 1 B> 23 36 2
88 -4 1 2 C> 2 2 36 2
+ 90 -2 1 2 3 3 C> 36 2
91 -3 1 2 3 3 <C 2 35 2
+ 93 -5 1 2 <C 23 35 2
94 -4 1 3 C> 23 35 2
+ 97 -1 1 34 C> 35 2
98 -2 1 34 <C 2 34 2
+ 102 -6 1 <C 25 34 2
103 -7 <A 26 34 2
104 -6 1 B> 26 34 2
105 -5 1 2 C> 25 34 2
+ 110 0 1 2 35 C> 34 2
111 -1 1 2 35 <C 2 33 2
+ 116 -6 1 2 <C 26 33 2
117 -5 1 3 C> 26 33 2
+ 123 1 1 37 C> 33 2
124 0 1 37 <C 2 3 3 2
+ 131 -7 1 <C 28 3 3 2
132 -8 <A 29 3 3 2
133 -7 1 B> 29 3 3 2
134 -6 1 2 C> 28 3 3 2
+ 142 2 1 2 38 C> 3 3 2
143 1 1 2 38 <C 2 3 2
+ 151 -7 1 2 <C 29 3 2
152 -6 1 3 C> 29 3 2
+ 161 3 1 310 C> 3 2
162 2 1 310 <C 2 2
+ 172 -8 1 <C 212
173 -9 <A 213
174 -8 1 B> 213
175 -7 1 2 C> 212
+ 187 5 1 2 312 C>
188 4 1 2 312 <B 1
+ 200 -8 1 2 <B 113
201 -7 1 2 C> 113
202 -8 1 2 <A 2 112
203 -9 1 <C 2 2 112
204 -10 <A 23 112
205 -9 1 B> 23 112
206 -8 1 2 C> 2 2 112
+ 208 -6 1 2 3 3 C> 112
209 -7 1 2 3 3 <A 2 111
+ 211 -9 1 2 <A 3 3 2 111
212 -10 1 <C 2 3 3 2 111
213 -11 <A 2 2 3 3 2 111
214 -10 1 B> 2 2 3 3 2 111
215 -9 1 2 C> 2 3 3 2 111
216 -8 1 2 3 C> 3 3 2 111
217 -9 1 2 3 <C 2 3 2 111
218 -10 1 2 <C 2 2 3 2 111
219 -9 1 3 C> 2 2 3 2 111
+ 221 -7 1 33 C> 3 2 111
222 -8 1 33 <C 2 2 111
+ 225 -11 1 <C 25 111
226 -12 <A 26 111
227 -11 1 B> 26 111
228 -10 1 2 C> 25 111
+ 233 -5 1 2 35 C> 111
234 -6 1 2 35 <A 2 110
+ 239 -11 1 2 <A 35 2 110
240 -12 1 <C 2 35 2 110
241 -13 <A 2 2 35 2 110
242 -12 1 B> 2 2 35 2 110
243 -11 1 2 C> 2 35 2 110
244 -10 1 2 3 C> 35 2 110
245 -11 1 2 3 <C 2 34 2 110
246 -12 1 2 <C 2 2 34 2 110
247 -11 1 3 C> 2 2 34 2 110
+ 249 -9 1 33 C> 34 2 110
250 -10 1 33 <C 2 33 2 110
+ 253 -13 1 <C 24 33 2 110
254 -14 <A 25 33 2 110
255 -13 1 B> 25 33 2 110
256 -12 1 2 C> 24 33 2 110
+ 260 -8 1 2 34 C> 33 2 110
261 -9 1 2 34 <C 2 3 3 2 110
+ 265 -13 1 2 <C 25 3 3 2 110
266 -12 1 3 C> 25 3 3 2 110
+ 271 -7 1 36 C> 3 3 2 110
272 -8 1 36 <C 2 3 2 110
+ 278 -14 1 <C 27 3 2 110
279 -15 <A 28 3 2 110
280 -14 1 B> 28 3 2 110
281 -13 1 2 C> 27 3 2 110
+ 288 -6 1 2 37 C> 3 2 110
289 -7 1 2 37 <C 2 2 110
+ 296 -14 1 2 <C 29 110
297 -13 1 3 C> 29 110
+ 306 -4 1 310 C> 110
307 -5 1 310 <A 2 19
+ 317 -15 1 <A 310 2 19
318 -14 3 B> 310 2 19
319 -15 3 <B 1 39 2 19
320 -16 <B 1 1 39 2 19
321 -15 C> 1 1 39 2 19
322 -16 <A 2 1 39 2 19
323 -15 1 B> 2 1 39 2 19
324 -14 1 2 C> 1 39 2 19
325 -15 1 2 <A 2 39 2 19
326 -16 1 <C 2 2 39 2 19
327 -17 <A 23 39 2 19
328 -16 1 B> 23 39 2 19
329 -15 1 2 C> 2 2 39 2 19
+ 331 -13 1 2 3 3 C> 39 2 19
332 -14 1 2 3 3 <C 2 38 2 19
+ 334 -16 1 2 <C 23 38 2 19
335 -15 1 3 C> 23 38 2 19
+ 338 -12 1 34 C> 38 2 19
339 -13 1 34 <C 2 37 2 19
+ 343 -17 1 <C 25 37 2 19
344 -18 <A 26 37 2 19
345 -17 1 B> 26 37 2 19
346 -16 1 2 C> 25 37 2 19
+ 351 -11 1 2 35 C> 37 2 19
352 -12 1 2 35 <C 2 36 2 19
+ 357 -17 1 2 <C 26 36 2 19
358 -16 1 3 C> 26 36 2 19
+ 364 -10 1 37 C> 36 2 19
365 -11 1 37 <C 2 35 2 19
+ 372 -18 1 <C 28 35 2 19
373 -19 <A 29 35 2 19
374 -18 1 B> 29 35 2 19
375 -17 1 2 C> 28 35 2 19
+ 383 -9 1 2 38 C> 35 2 19
384 -10 1 2 38 <C 2 34 2 19
+ 392 -18 1 2 <C 29 34 2 19
393 -17 1 3 C> 29 34 2 19
+ 402 -8 1 310 C> 34 2 19
403 -9 1 310 <C 2 33 2 19
+ 413 -19 1 <C 211 33 2 19
414 -20 <A 212 33 2 19
415 -19 1 B> 212 33 2 19
416 -18 1 2 C> 211 33 2 19
+ 427 -7 1 2 311 C> 33 2 19
428 -8 1 2 311 <C 2 3 3 2 19
+ 439 -19 1 2 <C 212 3 3 2 19
440 -18 1 3 C> 212 3 3 2 19
+ 452 -6 1 313 C> 3 3 2 19
453 -7 1 313 <C 2 3 2 19
After 453 steps (201 lines): state = C.
Produced 26 nonzeros.
Tape index -7, scanned [-20 .. 5].
| State | Count | Execution count | First in step | ||||||
|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
| A | 59 | 21 | 3 | 8 | 27 | 0 | 12 | 10 | 32 |
| B | 47 | 5 | 24 | 18 | 1 | 6 | 17 | ||
| C | 347 | 5 | 31 | 170 | 141 | 2 | 4 | 14 | 22 |