Comment: This TM produces >6.0x10^140 nonzeros in >4.3x10^281 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
A | 1RB | 3RB | 2LC | 3LA | 1 | right | B | 3 | right | B | 2 | left | C | 3 | left | A |
B | 0RC | 1RH | 2RC | 1LB | 0 | right | C | 1 | right | H | 2 | right | C | 1 | left | B |
C | 1LB | 2LA | 3RC | 2LC | 1 | left | B | 2 | left | A | 3 | right | C | 2 | left | C |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 2 1 0 C> 3 1 1 0 <B 1 4 2 1 0 C> 1 5 1 1 0 <A 2 6 2 1 1 B> 2 7 3 1 1 2 C> 8 2 1 1 2 <B 1 9 3 1 1 2 C> 1 10 2 1 1 2 <A 2 11 1 1 1 <C 2 2 12 0 1 <A 23 13 1 3 B> 23 14 2 3 2 C> 2 2 + 16 4 3 2 3 3 C> 17 3 3 2 3 3 <B 1 + 19 1 3 2 <B 13 20 2 3 2 C> 13 21 1 3 2 <A 2 1 1 22 0 3 <C 2 2 1 1 23 -1 <C 23 1 1 24 -2 <B 1 23 1 1 25 -1 C> 1 23 1 1 26 -2 <A 24 1 1 27 -1 1 B> 24 1 1 28 0 1 2 C> 23 1 1 + 31 3 1 2 33 C> 1 1 32 2 1 2 33 <A 2 1 + 35 -1 1 2 <A 33 2 1 36 -2 1 <C 2 33 2 1 37 -3 <A 2 2 33 2 1 38 -2 1 B> 2 2 33 2 1 39 -1 1 2 C> 2 33 2 1 40 0 1 2 3 C> 33 2 1 41 -1 1 2 3 <C 2 3 3 2 1 42 -2 1 2 <C 2 2 3 3 2 1 43 -1 1 3 C> 2 2 3 3 2 1 + 45 1 1 33 C> 3 3 2 1 46 0 1 33 <C 2 3 2 1 + 49 -3 1 <C 24 3 2 1 50 -4 <A 25 3 2 1 51 -3 1 B> 25 3 2 1 52 -2 1 2 C> 24 3 2 1 + 56 2 1 2 34 C> 3 2 1 57 1 1 2 34 <C 2 2 1 + 61 -3 1 2 <C 26 1 62 -2 1 3 C> 26 1 + 68 4 1 37 C> 1 69 3 1 37 <A 2 + 76 -4 1 <A 37 2 77 -3 3 B> 37 2 78 -4 3 <B 1 36 2 79 -5 <B 1 1 36 2 80 -4 C> 1 1 36 2 81 -5 <A 2 1 36 2 82 -4 1 B> 2 1 36 2 83 -3 1 2 C> 1 36 2 84 -4 1 2 <A 2 36 2 85 -5 1 <C 2 2 36 2 86 -6 <A 23 36 2 87 -5 1 B> 23 36 2 88 -4 1 2 C> 2 2 36 2 + 90 -2 1 2 3 3 C> 36 2 91 -3 1 2 3 3 <C 2 35 2 + 93 -5 1 2 <C 23 35 2 94 -4 1 3 C> 23 35 2 + 97 -1 1 34 C> 35 2 98 -2 1 34 <C 2 34 2 + 102 -6 1 <C 25 34 2 103 -7 <A 26 34 2 104 -6 1 B> 26 34 2 105 -5 1 2 C> 25 34 2 + 110 0 1 2 35 C> 34 2 111 -1 1 2 35 <C 2 33 2 + 116 -6 1 2 <C 26 33 2 117 -5 1 3 C> 26 33 2 + 123 1 1 37 C> 33 2 124 0 1 37 <C 2 3 3 2 + 131 -7 1 <C 28 3 3 2 132 -8 <A 29 3 3 2 133 -7 1 B> 29 3 3 2 134 -6 1 2 C> 28 3 3 2 + 142 2 1 2 38 C> 3 3 2 143 1 1 2 38 <C 2 3 2 + 151 -7 1 2 <C 29 3 2 152 -6 1 3 C> 29 3 2 + 161 3 1 310 C> 3 2 162 2 1 310 <C 2 2 + 172 -8 1 <C 212 173 -9 <A 213 174 -8 1 B> 213 175 -7 1 2 C> 212 + 187 5 1 2 312 C> 188 4 1 2 312 <B 1 + 200 -8 1 2 <B 113 201 -7 1 2 C> 113 202 -8 1 2 <A 2 112 203 -9 1 <C 2 2 112 204 -10 <A 23 112 205 -9 1 B> 23 112 206 -8 1 2 C> 2 2 112 + 208 -6 1 2 3 3 C> 112 209 -7 1 2 3 3 <A 2 111 + 211 -9 1 2 <A 3 3 2 111 212 -10 1 <C 2 3 3 2 111 213 -11 <A 2 2 3 3 2 111 214 -10 1 B> 2 2 3 3 2 111 215 -9 1 2 C> 2 3 3 2 111 216 -8 1 2 3 C> 3 3 2 111 217 -9 1 2 3 <C 2 3 2 111 218 -10 1 2 <C 2 2 3 2 111 219 -9 1 3 C> 2 2 3 2 111 + 221 -7 1 33 C> 3 2 111 222 -8 1 33 <C 2 2 111 + 225 -11 1 <C 25 111 226 -12 <A 26 111 227 -11 1 B> 26 111 228 -10 1 2 C> 25 111 + 233 -5 1 2 35 C> 111 234 -6 1 2 35 <A 2 110 + 239 -11 1 2 <A 35 2 110 240 -12 1 <C 2 35 2 110 241 -13 <A 2 2 35 2 110 242 -12 1 B> 2 2 35 2 110 243 -11 1 2 C> 2 35 2 110 244 -10 1 2 3 C> 35 2 110 245 -11 1 2 3 <C 2 34 2 110 246 -12 1 2 <C 2 2 34 2 110 247 -11 1 3 C> 2 2 34 2 110 + 249 -9 1 33 C> 34 2 110 250 -10 1 33 <C 2 33 2 110 + 253 -13 1 <C 24 33 2 110 254 -14 <A 25 33 2 110 255 -13 1 B> 25 33 2 110 256 -12 1 2 C> 24 33 2 110 + 260 -8 1 2 34 C> 33 2 110 261 -9 1 2 34 <C 2 3 3 2 110 + 265 -13 1 2 <C 25 3 3 2 110 266 -12 1 3 C> 25 3 3 2 110 + 271 -7 1 36 C> 3 3 2 110 272 -8 1 36 <C 2 3 2 110 + 278 -14 1 <C 27 3 2 110 279 -15 <A 28 3 2 110 280 -14 1 B> 28 3 2 110 281 -13 1 2 C> 27 3 2 110 + 288 -6 1 2 37 C> 3 2 110 289 -7 1 2 37 <C 2 2 110 + 296 -14 1 2 <C 29 110 297 -13 1 3 C> 29 110 + 306 -4 1 310 C> 110 307 -5 1 310 <A 2 19 + 317 -15 1 <A 310 2 19 318 -14 3 B> 310 2 19 319 -15 3 <B 1 39 2 19 320 -16 <B 1 1 39 2 19 321 -15 C> 1 1 39 2 19 322 -16 <A 2 1 39 2 19 323 -15 1 B> 2 1 39 2 19 324 -14 1 2 C> 1 39 2 19 325 -15 1 2 <A 2 39 2 19 326 -16 1 <C 2 2 39 2 19 327 -17 <A 23 39 2 19 328 -16 1 B> 23 39 2 19 329 -15 1 2 C> 2 2 39 2 19 + 331 -13 1 2 3 3 C> 39 2 19 332 -14 1 2 3 3 <C 2 38 2 19 + 334 -16 1 2 <C 23 38 2 19 335 -15 1 3 C> 23 38 2 19 + 338 -12 1 34 C> 38 2 19 339 -13 1 34 <C 2 37 2 19 + 343 -17 1 <C 25 37 2 19 344 -18 <A 26 37 2 19 345 -17 1 B> 26 37 2 19 346 -16 1 2 C> 25 37 2 19 + 351 -11 1 2 35 C> 37 2 19 352 -12 1 2 35 <C 2 36 2 19 + 357 -17 1 2 <C 26 36 2 19 358 -16 1 3 C> 26 36 2 19 + 364 -10 1 37 C> 36 2 19 365 -11 1 37 <C 2 35 2 19 + 372 -18 1 <C 28 35 2 19 373 -19 <A 29 35 2 19 374 -18 1 B> 29 35 2 19 375 -17 1 2 C> 28 35 2 19 + 383 -9 1 2 38 C> 35 2 19 384 -10 1 2 38 <C 2 34 2 19 + 392 -18 1 2 <C 29 34 2 19 393 -17 1 3 C> 29 34 2 19 + 402 -8 1 310 C> 34 2 19 403 -9 1 310 <C 2 33 2 19 + 413 -19 1 <C 211 33 2 19 414 -20 <A 212 33 2 19 415 -19 1 B> 212 33 2 19 416 -18 1 2 C> 211 33 2 19 + 427 -7 1 2 311 C> 33 2 19 428 -8 1 2 311 <C 2 3 3 2 19 + 439 -19 1 2 <C 212 3 3 2 19 440 -18 1 3 C> 212 3 3 2 19 + 452 -6 1 313 C> 3 3 2 19 453 -7 1 313 <C 2 3 2 19 After 453 steps (201 lines): state = C. Produced 26 nonzeros. Tape index -7, scanned [-20 .. 5].
State | Count | Execution count | First in step | ||||||
---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
A | 59 | 21 | 3 | 8 | 27 | 0 | 12 | 10 | 32 |
B | 47 | 5 | 24 | 18 | 1 | 6 | 17 | ||
C | 347 | 5 | 31 | 170 | 141 | 2 | 4 | 14 | 22 |