3-state 4-symbol formerly best (T.J. & S. Ligocki)

Comment: This TM produces >6.0x10^140 nonzeros in >4.3x10^281 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on 0 on 1 on 2 on 3
Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 3RB 2LC 3LA 1 right B 3 right B 2 left C 3 left A
B 0RC 1RH 2RC 1LB 0 right C 1 right H 2 right C 1 left B
C 1LB 2LA 3RC 2LC 1 left B 2 left A 3 right C 2 left C
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     2  1 0 C>
     3     1  1 0 <B 1
     4     2  1 0 C> 1
     5     1  1 0 <A 2
     6     2  1 1 B> 2
     7     3  1 1 2 C>
     8     2  1 1 2 <B 1
     9     3  1 1 2 C> 1
    10     2  1 1 2 <A 2
    11     1  1 1 <C 2 2
    12     0  1 <A 23
    13     1  3 B> 23
    14     2  3 2 C> 2 2
+   16     4  3 2 3 3 C>
    17     3  3 2 3 3 <B 1
+   19     1  3 2 <B 13
    20     2  3 2 C> 13
    21     1  3 2 <A 2 1 1
    22     0  3 <C 2 2 1 1
    23    -1  <C 23 1 1
    24    -2  <B 1 23 1 1
    25    -1  C> 1 23 1 1
    26    -2  <A 24 1 1
    27    -1  1 B> 24 1 1
    28     0  1 2 C> 23 1 1
+   31     3  1 2 33 C> 1 1
    32     2  1 2 33 <A 2 1
+   35    -1  1 2 <A 33 2 1
    36    -2  1 <C 2 33 2 1
    37    -3  <A 2 2 33 2 1
    38    -2  1 B> 2 2 33 2 1
    39    -1  1 2 C> 2 33 2 1
    40     0  1 2 3 C> 33 2 1
    41    -1  1 2 3 <C 2 3 3 2 1
    42    -2  1 2 <C 2 2 3 3 2 1
    43    -1  1 3 C> 2 2 3 3 2 1
+   45     1  1 33 C> 3 3 2 1
    46     0  1 33 <C 2 3 2 1
+   49    -3  1 <C 24 3 2 1
    50    -4  <A 25 3 2 1
    51    -3  1 B> 25 3 2 1
    52    -2  1 2 C> 24 3 2 1
+   56     2  1 2 34 C> 3 2 1
    57     1  1 2 34 <C 2 2 1
+   61    -3  1 2 <C 26 1
    62    -2  1 3 C> 26 1
+   68     4  1 37 C> 1
    69     3  1 37 <A 2
+   76    -4  1 <A 37 2
    77    -3  3 B> 37 2
    78    -4  3 <B 1 36 2
    79    -5  <B 1 1 36 2
    80    -4  C> 1 1 36 2
    81    -5  <A 2 1 36 2
    82    -4  1 B> 2 1 36 2
    83    -3  1 2 C> 1 36 2
    84    -4  1 2 <A 2 36 2
    85    -5  1 <C 2 2 36 2
    86    -6  <A 23 36 2
    87    -5  1 B> 23 36 2
    88    -4  1 2 C> 2 2 36 2
+   90    -2  1 2 3 3 C> 36 2
    91    -3  1 2 3 3 <C 2 35 2
+   93    -5  1 2 <C 23 35 2
    94    -4  1 3 C> 23 35 2
+   97    -1  1 34 C> 35 2
    98    -2  1 34 <C 2 34 2
+  102    -6  1 <C 25 34 2
   103    -7  <A 26 34 2
   104    -6  1 B> 26 34 2
   105    -5  1 2 C> 25 34 2
+  110     0  1 2 35 C> 34 2
   111    -1  1 2 35 <C 2 33 2
+  116    -6  1 2 <C 26 33 2
   117    -5  1 3 C> 26 33 2
+  123     1  1 37 C> 33 2
   124     0  1 37 <C 2 3 3 2
+  131    -7  1 <C 28 3 3 2
   132    -8  <A 29 3 3 2
   133    -7  1 B> 29 3 3 2
   134    -6  1 2 C> 28 3 3 2
+  142     2  1 2 38 C> 3 3 2
   143     1  1 2 38 <C 2 3 2
+  151    -7  1 2 <C 29 3 2
   152    -6  1 3 C> 29 3 2
+  161     3  1 310 C> 3 2
   162     2  1 310 <C 2 2
+  172    -8  1 <C 212
   173    -9  <A 213
   174    -8  1 B> 213
   175    -7  1 2 C> 212
+  187     5  1 2 312 C>
   188     4  1 2 312 <B 1
+  200    -8  1 2 <B 113
   201    -7  1 2 C> 113
   202    -8  1 2 <A 2 112
   203    -9  1 <C 2 2 112
   204   -10  <A 23 112
   205    -9  1 B> 23 112
   206    -8  1 2 C> 2 2 112
+  208    -6  1 2 3 3 C> 112
   209    -7  1 2 3 3 <A 2 111
+  211    -9  1 2 <A 3 3 2 111
   212   -10  1 <C 2 3 3 2 111
   213   -11  <A 2 2 3 3 2 111
   214   -10  1 B> 2 2 3 3 2 111
   215    -9  1 2 C> 2 3 3 2 111
   216    -8  1 2 3 C> 3 3 2 111
   217    -9  1 2 3 <C 2 3 2 111
   218   -10  1 2 <C 2 2 3 2 111
   219    -9  1 3 C> 2 2 3 2 111
+  221    -7  1 33 C> 3 2 111
   222    -8  1 33 <C 2 2 111
+  225   -11  1 <C 25 111
   226   -12  <A 26 111
   227   -11  1 B> 26 111
   228   -10  1 2 C> 25 111
+  233    -5  1 2 35 C> 111
   234    -6  1 2 35 <A 2 110
+  239   -11  1 2 <A 35 2 110
   240   -12  1 <C 2 35 2 110
   241   -13  <A 2 2 35 2 110
   242   -12  1 B> 2 2 35 2 110
   243   -11  1 2 C> 2 35 2 110
   244   -10  1 2 3 C> 35 2 110
   245   -11  1 2 3 <C 2 34 2 110
   246   -12  1 2 <C 2 2 34 2 110
   247   -11  1 3 C> 2 2 34 2 110
+  249    -9  1 33 C> 34 2 110
   250   -10  1 33 <C 2 33 2 110
+  253   -13  1 <C 24 33 2 110
   254   -14  <A 25 33 2 110
   255   -13  1 B> 25 33 2 110
   256   -12  1 2 C> 24 33 2 110
+  260    -8  1 2 34 C> 33 2 110
   261    -9  1 2 34 <C 2 3 3 2 110
+  265   -13  1 2 <C 25 3 3 2 110
   266   -12  1 3 C> 25 3 3 2 110
+  271    -7  1 36 C> 3 3 2 110
   272    -8  1 36 <C 2 3 2 110
+  278   -14  1 <C 27 3 2 110
   279   -15  <A 28 3 2 110
   280   -14  1 B> 28 3 2 110
   281   -13  1 2 C> 27 3 2 110
+  288    -6  1 2 37 C> 3 2 110
   289    -7  1 2 37 <C 2 2 110
+  296   -14  1 2 <C 29 110
   297   -13  1 3 C> 29 110
+  306    -4  1 310 C> 110
   307    -5  1 310 <A 2 19
+  317   -15  1 <A 310 2 19
   318   -14  3 B> 310 2 19
   319   -15  3 <B 1 39 2 19
   320   -16  <B 1 1 39 2 19
   321   -15  C> 1 1 39 2 19
   322   -16  <A 2 1 39 2 19
   323   -15  1 B> 2 1 39 2 19
   324   -14  1 2 C> 1 39 2 19
   325   -15  1 2 <A 2 39 2 19
   326   -16  1 <C 2 2 39 2 19
   327   -17  <A 23 39 2 19
   328   -16  1 B> 23 39 2 19
   329   -15  1 2 C> 2 2 39 2 19
+  331   -13  1 2 3 3 C> 39 2 19
   332   -14  1 2 3 3 <C 2 38 2 19
+  334   -16  1 2 <C 23 38 2 19
   335   -15  1 3 C> 23 38 2 19
+  338   -12  1 34 C> 38 2 19
   339   -13  1 34 <C 2 37 2 19
+  343   -17  1 <C 25 37 2 19
   344   -18  <A 26 37 2 19
   345   -17  1 B> 26 37 2 19
   346   -16  1 2 C> 25 37 2 19
+  351   -11  1 2 35 C> 37 2 19
   352   -12  1 2 35 <C 2 36 2 19
+  357   -17  1 2 <C 26 36 2 19
   358   -16  1 3 C> 26 36 2 19
+  364   -10  1 37 C> 36 2 19
   365   -11  1 37 <C 2 35 2 19
+  372   -18  1 <C 28 35 2 19
   373   -19  <A 29 35 2 19
   374   -18  1 B> 29 35 2 19
   375   -17  1 2 C> 28 35 2 19
+  383    -9  1 2 38 C> 35 2 19
   384   -10  1 2 38 <C 2 34 2 19
+  392   -18  1 2 <C 29 34 2 19
   393   -17  1 3 C> 29 34 2 19
+  402    -8  1 310 C> 34 2 19
   403    -9  1 310 <C 2 33 2 19
+  413   -19  1 <C 211 33 2 19
   414   -20  <A 212 33 2 19
   415   -19  1 B> 212 33 2 19
   416   -18  1 2 C> 211 33 2 19
+  427    -7  1 2 311 C> 33 2 19
   428    -8  1 2 311 <C 2 3 3 2 19
+  439   -19  1 2 <C 212 3 3 2 19
   440   -18  1 3 C> 212 3 3 2 19
+  452    -6  1 313 C> 3 3 2 19
   453    -7  1 313 <C 2 3 2 19

After 453 steps (201 lines): state = C.
Produced     26 nonzeros.
Tape index -7, scanned [-20 .. 5].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 0 on 1 on 2 on 3
A 59 21 3 8 27 0 12 10 32
B 47 5   24 18 1   6 17
C 347 5 31 170 141 2 4 14 22
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:13:35 CEST 2010