Comment: This TM produces >1.9x10^4933 nonzeros in >2.4x10^9866 steps. Comment: This is the currently best known 2x6 TM
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 5 |
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||||
A | 1RB | 2LA | 1RH | 5LB | 5LA | 4LB | 1 | right | B | 2 | left | A | 1 | right | H | 5 | left | B | 5 | left | A | 4 | left | B |
B | 1LA | 4RB | 3RB | 5LB | 1LB | 4RA | 1 | left | A | 4 | right | B | 3 | right | B | 5 | left | B | 1 | left | B | 4 | right | A |
The same TM just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. Simulation is done as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Pushing initial machine. Pushing macro factor 1. Steps BasSteps BasTpos Tape contents 0 0 0 A> 1 1 1 1 B> 2 2 0 1 <A 1 3 3 -1 <A 2 1 4 4 0 1 B> 2 1 5 5 1 1 3 B> 1 6 6 2 1 3 4 B> 7 7 1 1 3 4 <A 1 8 8 0 1 3 <A 5 1 9 9 -1 1 <B 52 1 10 10 0 4 B> 52 1 11 11 1 42 A> 5 1 12 12 0 42 <B 4 1 13 14 -2 <B 12 4 1 14 15 -3 <A 13 4 1 15 16 -2 1 B> 13 4 1 16 19 1 1 43 B> 4 1 17 20 0 1 43 <B 12 18 23 -3 1 <B 15 19 24 -2 4 B> 15 20 29 3 46 B> 21 30 2 46 <A 1 22 36 -4 <A 56 1 23 37 -3 1 B> 56 1 24 38 -2 1 4 A> 55 1 25 39 -3 1 4 <B 4 54 1 26 40 -4 1 <B 1 4 54 1 27 41 -3 4 B> 1 4 54 1 28 42 -2 42 B> 4 54 1 29 43 -3 42 <B 1 54 1 30 45 -5 <B 13 54 1 31 46 -6 <A 14 54 1 32 47 -5 1 B> 14 54 1 33 51 -1 1 44 B> 54 1 34 52 0 1 45 A> 53 1 35 53 -1 1 45 <B 4 52 1 36 58 -6 1 <B 15 4 52 1 37 59 -5 4 B> 15 4 52 1 38 64 0 46 B> 4 52 1 39 65 -1 46 <B 1 52 1 40 71 -7 <B 17 52 1 41 72 -8 <A 18 52 1 42 73 -7 1 B> 18 52 1 43 81 1 1 48 B> 52 1 44 82 2 1 49 A> 5 1 45 83 1 1 49 <B 4 1 46 92 -8 1 <B 19 4 1 47 93 -7 4 B> 19 4 1 48 102 2 410 B> 4 1 49 103 1 410 <B 12 50 113 -9 <B 112 51 114 -10 <A 113 52 115 -9 1 B> 113 53 128 4 1 413 B> 54 129 3 1 413 <A 1 55 142 -10 1 <A 513 1 56 143 -11 <A 2 513 1 57 144 -10 1 B> 2 513 1 58 145 -9 1 3 B> 513 1 59 146 -8 1 3 4 A> 512 1 60 147 -9 1 3 4 <B 4 511 1 61 148 -10 1 3 <B 1 4 511 1 62 149 -11 1 <B 5 1 4 511 1 63 150 -10 4 B> 5 1 4 511 1 64 151 -9 42 A> 1 4 511 1 65 152 -10 42 <A 2 4 511 1 66 154 -12 <A 52 2 4 511 1 67 155 -11 1 B> 52 2 4 511 1 68 156 -10 1 4 A> 5 2 4 511 1 69 157 -11 1 4 <B 4 2 4 511 1 70 158 -12 1 <B 1 4 2 4 511 1 71 159 -11 4 B> 1 4 2 4 511 1 72 160 -10 42 B> 4 2 4 511 1 73 161 -11 42 <B 1 2 4 511 1 74 163 -13 <B 13 2 4 511 1 75 164 -14 <A 14 2 4 511 1 76 165 -13 1 B> 14 2 4 511 1 77 169 -9 1 44 B> 2 4 511 1 78 170 -8 1 44 3 B> 4 511 1 79 171 -9 1 44 3 <B 1 511 1 80 172 -10 1 44 <B 5 1 511 1 81 176 -14 1 <B 14 5 1 511 1 82 177 -13 4 B> 14 5 1 511 1 83 181 -9 45 B> 5 1 511 1 84 182 -8 46 A> 1 511 1 85 183 -9 46 <A 2 511 1 86 189 -15 <A 56 2 511 1 87 190 -14 1 B> 56 2 511 1 88 191 -13 1 4 A> 55 2 511 1 89 192 -14 1 4 <B 4 54 2 511 1 90 193 -15 1 <B 1 4 54 2 511 1 91 194 -14 4 B> 1 4 54 2 511 1 92 195 -13 42 B> 4 54 2 511 1 93 196 -14 42 <B 1 54 2 511 1 94 198 -16 <B 13 54 2 511 1 95 199 -17 <A 14 54 2 511 1 96 200 -16 1 B> 14 54 2 511 1 97 204 -12 1 44 B> 54 2 511 1 98 205 -11 1 45 A> 53 2 511 1 99 206 -12 1 45 <B 4 52 2 511 1 100 211 -17 1 <B 15 4 52 2 511 1 101 212 -16 4 B> 15 4 52 2 511 1 102 217 -11 46 B> 4 52 2 511 1 103 218 -12 46 <B 1 52 2 511 1 104 224 -18 <B 17 52 2 511 1 105 225 -19 <A 18 52 2 511 1 106 226 -18 1 B> 18 52 2 511 1 107 234 -10 1 48 B> 52 2 511 1 108 235 -9 1 49 A> 5 2 511 1 109 236 -10 1 49 <B 4 2 511 1 110 245 -19 1 <B 19 4 2 511 1 111 246 -18 4 B> 19 4 2 511 1 112 255 -9 410 B> 4 2 511 1 113 256 -10 410 <B 1 2 511 1 114 266 -20 <B 111 2 511 1 115 267 -21 <A 112 2 511 1 116 268 -20 1 B> 112 2 511 1 117 280 -8 1 412 B> 2 511 1 118 281 -7 1 412 3 B> 511 1 119 282 -6 1 412 3 4 A> 510 1 120 283 -7 1 412 3 4 <B 4 59 1 121 284 -8 1 412 3 <B 1 4 59 1 122 285 -9 1 412 <B 5 1 4 59 1 123 297 -21 1 <B 112 5 1 4 59 1 124 298 -20 4 B> 112 5 1 4 59 1 125 310 -8 413 B> 5 1 4 59 1 126 311 -7 414 A> 1 4 59 1 127 312 -8 414 <A 2 4 59 1 128 326 -22 <A 514 2 4 59 1 129 327 -21 1 B> 514 2 4 59 1 130 328 -20 1 4 A> 513 2 4 59 1 131 329 -21 1 4 <B 4 512 2 4 59 1 132 330 -22 1 <B 1 4 512 2 4 59 1 133 331 -21 4 B> 1 4 512 2 4 59 1 134 332 -20 42 B> 4 512 2 4 59 1 135 333 -21 42 <B 1 512 2 4 59 1 136 335 -23 <B 13 512 2 4 59 1 137 336 -24 <A 14 512 2 4 59 1 138 337 -23 1 B> 14 512 2 4 59 1 139 341 -19 1 44 B> 512 2 4 59 1 140 342 -18 1 45 A> 511 2 4 59 1 141 343 -19 1 45 <B 4 510 2 4 59 1 142 348 -24 1 <B 15 4 510 2 4 59 1 143 349 -23 4 B> 15 4 510 2 4 59 1 144 354 -18 46 B> 4 510 2 4 59 1 145 355 -19 46 <B 1 510 2 4 59 1 146 361 -25 <B 17 510 2 4 59 1 147 362 -26 <A 18 510 2 4 59 1 148 363 -25 1 B> 18 510 2 4 59 1 149 371 -17 1 48 B> 510 2 4 59 1 150 372 -16 1 49 A> 59 2 4 59 1 151 373 -17 1 49 <B 4 58 2 4 59 1 152 382 -26 1 <B 19 4 58 2 4 59 1 153 383 -25 4 B> 19 4 58 2 4 59 1 154 392 -16 410 B> 4 58 2 4 59 1 155 393 -17 410 <B 1 58 2 4 59 1 156 403 -27 <B 111 58 2 4 59 1 157 404 -28 <A 112 58 2 4 59 1 158 405 -27 1 B> 112 58 2 4 59 1 159 417 -15 1 412 B> 58 2 4 59 1 160 418 -14 1 413 A> 57 2 4 59 1 161 419 -15 1 413 <B 4 56 2 4 59 1 162 432 -28 1 <B 113 4 56 2 4 59 1 163 433 -27 4 B> 113 4 56 2 4 59 1 164 446 -14 414 B> 4 56 2 4 59 1 165 447 -15 414 <B 1 56 2 4 59 1 166 461 -29 <B 115 56 2 4 59 1 167 462 -30 <A 116 56 2 4 59 1 168 463 -29 1 B> 116 56 2 4 59 1 169 479 -13 1 416 B> 56 2 4 59 1 170 480 -12 1 417 A> 55 2 4 59 1 171 481 -13 1 417 <B 4 54 2 4 59 1 172 498 -30 1 <B 117 4 54 2 4 59 1 173 499 -29 4 B> 117 4 54 2 4 59 1 174 516 -12 418 B> 4 54 2 4 59 1 175 517 -13 418 <B 1 54 2 4 59 1 176 535 -31 <B 119 54 2 4 59 1 177 536 -32 <A 120 54 2 4 59 1 178 537 -31 1 B> 120 54 2 4 59 1 179 557 -11 1 420 B> 54 2 4 59 1 180 558 -10 1 421 A> 53 2 4 59 1 181 559 -11 1 421 <B 4 52 2 4 59 1 182 580 -32 1 <B 121 4 52 2 4 59 1 183 581 -31 4 B> 121 4 52 2 4 59 1 184 602 -10 422 B> 4 52 2 4 59 1 185 603 -11 422 <B 1 52 2 4 59 1 186 625 -33 <B 123 52 2 4 59 1 187 626 -34 <A 124 52 2 4 59 1 188 627 -33 1 B> 124 52 2 4 59 1 189 651 -9 1 424 B> 52 2 4 59 1 190 652 -8 1 425 A> 5 2 4 59 1 191 653 -9 1 425 <B 4 2 4 59 1 192 678 -34 1 <B 125 4 2 4 59 1 193 679 -33 4 B> 125 4 2 4 59 1 194 704 -8 426 B> 4 2 4 59 1 195 705 -9 426 <B 1 2 4 59 1 196 731 -35 <B 127 2 4 59 1 197 732 -36 <A 128 2 4 59 1 198 733 -35 1 B> 128 2 4 59 1 199 761 -7 1 428 B> 2 4 59 1 200 762 -6 1 428 3 B> 4 59 1 Lines: 201 Top steps: 200 Macro steps: 200 Basic steps: 762 Tape index: -6 nonzeros: 41 log10(nonzeros): 1.613 log10(steps ): 2.882
Input to awk program: gohalt 1 nbs 6 T 2-state 6-symbol #g (T.J. & S. Ligocki) : >1.9x10^4933 >2.4x10^9866 C This is the currently best known 2x6 TM 5T 1RB 2LA 1RH 5LB 5LA 4LB 1LA 4RB 3RB 5LB 1LB 4RA L 44 M 201 pref sim machv Lig26_g just simple machv Lig26_g-r with repetitions reduced machv Lig26_g-1 with tape symbol exponents machv Lig26_g-m as 1-macro machine machv Lig26_g-a as 1-macro machine with pure additive config-TRs iam Lig26_g-m mtype 1 mmtyp 1 r 1 H 1 mac 0 E 2 sympr HM 1 date Tue Jul 6 22:13:24 CEST 2010 edate Tue Jul 6 22:13:24 CEST 2010 bnspeed 1 short 7Start: Tue Jul 6 22:13:24 CEST 2010
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;