2-state 6-symbol #g (T.J. & S. Ligocki)

Comment: This TM produces >1.9x10^4933 nonzeros in >2.4x10^9866 steps.
Comment: This is the currently best known 2x6 TM

State on
0
on
1
on
2
on
3
on
4
on
5
on 0 on 1 on 2 on 3 on 4 on 5
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 2LA 1RH 5LB 5LA 4LB 1 right B 2 left A 1 right H 5 left B 5 left A 4 left B
B 1LA 4RB 3RB 5LB 1LB 4RA 1 left A 4 right B 3 right B 5 left B 1 left B 4 right A
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing macro factor 1.

Steps BasSteps BasTpos  Tape contents
    0        0       0  A>
    1        1       1  1 B>
    2        2       0  1 <A 1
    3        3      -1  <A 2 1
    4        4       0  1 B> 2 1
    5        5       1  1 3 B> 1
    6        6       2  1 3 4 B>
    7        7       1  1 3 4 <A 1
    8        8       0  1 3 <A 5 1
    9        9      -1  1 <B 52 1
   10       10       0  4 B> 52 1
   11       11       1  42 A> 5 1
   12       12       0  42 <B 4 1
   13       14      -2  <B 12 4 1
   14       15      -3  <A 13 4 1
   15       16      -2  1 B> 13 4 1
   16       19       1  1 43 B> 4 1
   17       20       0  1 43 <B 12
   18       23      -3  1 <B 15
   19       24      -2  4 B> 15
   20       29       3  46 B>
   21       30       2  46 <A 1
   22       36      -4  <A 56 1
   23       37      -3  1 B> 56 1
   24       38      -2  1 4 A> 55 1
   25       39      -3  1 4 <B 4 54 1
   26       40      -4  1 <B 1 4 54 1
   27       41      -3  4 B> 1 4 54 1
   28       42      -2  42 B> 4 54 1
   29       43      -3  42 <B 1 54 1
   30       45      -5  <B 13 54 1
   31       46      -6  <A 14 54 1
   32       47      -5  1 B> 14 54 1
   33       51      -1  1 44 B> 54 1
   34       52       0  1 45 A> 53 1
   35       53      -1  1 45 <B 4 52 1
   36       58      -6  1 <B 15 4 52 1
   37       59      -5  4 B> 15 4 52 1
   38       64       0  46 B> 4 52 1
   39       65      -1  46 <B 1 52 1
   40       71      -7  <B 17 52 1
   41       72      -8  <A 18 52 1
   42       73      -7  1 B> 18 52 1
   43       81       1  1 48 B> 52 1
   44       82       2  1 49 A> 5 1
   45       83       1  1 49 <B 4 1
   46       92      -8  1 <B 19 4 1
   47       93      -7  4 B> 19 4 1
   48      102       2  410 B> 4 1
   49      103       1  410 <B 12
   50      113      -9  <B 112
   51      114     -10  <A 113
   52      115      -9  1 B> 113
   53      128       4  1 413 B>
   54      129       3  1 413 <A 1
   55      142     -10  1 <A 513 1
   56      143     -11  <A 2 513 1
   57      144     -10  1 B> 2 513 1
   58      145      -9  1 3 B> 513 1
   59      146      -8  1 3 4 A> 512 1
   60      147      -9  1 3 4 <B 4 511 1
   61      148     -10  1 3 <B 1 4 511 1
   62      149     -11  1 <B 5 1 4 511 1
   63      150     -10  4 B> 5 1 4 511 1
   64      151      -9  42 A> 1 4 511 1
   65      152     -10  42 <A 2 4 511 1
   66      154     -12  <A 52 2 4 511 1
   67      155     -11  1 B> 52 2 4 511 1
   68      156     -10  1 4 A> 5 2 4 511 1
   69      157     -11  1 4 <B 4 2 4 511 1
   70      158     -12  1 <B 1 4 2 4 511 1
   71      159     -11  4 B> 1 4 2 4 511 1
   72      160     -10  42 B> 4 2 4 511 1
   73      161     -11  42 <B 1 2 4 511 1
   74      163     -13  <B 13 2 4 511 1
   75      164     -14  <A 14 2 4 511 1
   76      165     -13  1 B> 14 2 4 511 1
   77      169      -9  1 44 B> 2 4 511 1
   78      170      -8  1 44 3 B> 4 511 1
   79      171      -9  1 44 3 <B 1 511 1
   80      172     -10  1 44 <B 5 1 511 1
   81      176     -14  1 <B 14 5 1 511 1
   82      177     -13  4 B> 14 5 1 511 1
   83      181      -9  45 B> 5 1 511 1
   84      182      -8  46 A> 1 511 1
   85      183      -9  46 <A 2 511 1
   86      189     -15  <A 56 2 511 1
   87      190     -14  1 B> 56 2 511 1
   88      191     -13  1 4 A> 55 2 511 1
   89      192     -14  1 4 <B 4 54 2 511 1
   90      193     -15  1 <B 1 4 54 2 511 1
   91      194     -14  4 B> 1 4 54 2 511 1
   92      195     -13  42 B> 4 54 2 511 1
   93      196     -14  42 <B 1 54 2 511 1
   94      198     -16  <B 13 54 2 511 1
   95      199     -17  <A 14 54 2 511 1
   96      200     -16  1 B> 14 54 2 511 1
   97      204     -12  1 44 B> 54 2 511 1
   98      205     -11  1 45 A> 53 2 511 1
   99      206     -12  1 45 <B 4 52 2 511 1
  100      211     -17  1 <B 15 4 52 2 511 1
  101      212     -16  4 B> 15 4 52 2 511 1
  102      217     -11  46 B> 4 52 2 511 1
  103      218     -12  46 <B 1 52 2 511 1
  104      224     -18  <B 17 52 2 511 1
  105      225     -19  <A 18 52 2 511 1
  106      226     -18  1 B> 18 52 2 511 1
  107      234     -10  1 48 B> 52 2 511 1
  108      235      -9  1 49 A> 5 2 511 1
  109      236     -10  1 49 <B 4 2 511 1
  110      245     -19  1 <B 19 4 2 511 1
  111      246     -18  4 B> 19 4 2 511 1
  112      255      -9  410 B> 4 2 511 1
  113      256     -10  410 <B 1 2 511 1
  114      266     -20  <B 111 2 511 1
  115      267     -21  <A 112 2 511 1
  116      268     -20  1 B> 112 2 511 1
  117      280      -8  1 412 B> 2 511 1
  118      281      -7  1 412 3 B> 511 1
  119      282      -6  1 412 3 4 A> 510 1
  120      283      -7  1 412 3 4 <B 4 59 1
  121      284      -8  1 412 3 <B 1 4 59 1
  122      285      -9  1 412 <B 5 1 4 59 1
  123      297     -21  1 <B 112 5 1 4 59 1
  124      298     -20  4 B> 112 5 1 4 59 1
  125      310      -8  413 B> 5 1 4 59 1
  126      311      -7  414 A> 1 4 59 1
  127      312      -8  414 <A 2 4 59 1
  128      326     -22  <A 514 2 4 59 1
  129      327     -21  1 B> 514 2 4 59 1
  130      328     -20  1 4 A> 513 2 4 59 1
  131      329     -21  1 4 <B 4 512 2 4 59 1
  132      330     -22  1 <B 1 4 512 2 4 59 1
  133      331     -21  4 B> 1 4 512 2 4 59 1
  134      332     -20  42 B> 4 512 2 4 59 1
  135      333     -21  42 <B 1 512 2 4 59 1
  136      335     -23  <B 13 512 2 4 59 1
  137      336     -24  <A 14 512 2 4 59 1
  138      337     -23  1 B> 14 512 2 4 59 1
  139      341     -19  1 44 B> 512 2 4 59 1
  140      342     -18  1 45 A> 511 2 4 59 1
  141      343     -19  1 45 <B 4 510 2 4 59 1
  142      348     -24  1 <B 15 4 510 2 4 59 1
  143      349     -23  4 B> 15 4 510 2 4 59 1
  144      354     -18  46 B> 4 510 2 4 59 1
  145      355     -19  46 <B 1 510 2 4 59 1
  146      361     -25  <B 17 510 2 4 59 1
  147      362     -26  <A 18 510 2 4 59 1
  148      363     -25  1 B> 18 510 2 4 59 1
  149      371     -17  1 48 B> 510 2 4 59 1
  150      372     -16  1 49 A> 59 2 4 59 1
  151      373     -17  1 49 <B 4 58 2 4 59 1
  152      382     -26  1 <B 19 4 58 2 4 59 1
  153      383     -25  4 B> 19 4 58 2 4 59 1
  154      392     -16  410 B> 4 58 2 4 59 1
  155      393     -17  410 <B 1 58 2 4 59 1
  156      403     -27  <B 111 58 2 4 59 1
  157      404     -28  <A 112 58 2 4 59 1
  158      405     -27  1 B> 112 58 2 4 59 1
  159      417     -15  1 412 B> 58 2 4 59 1
  160      418     -14  1 413 A> 57 2 4 59 1
  161      419     -15  1 413 <B 4 56 2 4 59 1
  162      432     -28  1 <B 113 4 56 2 4 59 1
  163      433     -27  4 B> 113 4 56 2 4 59 1
  164      446     -14  414 B> 4 56 2 4 59 1
  165      447     -15  414 <B 1 56 2 4 59 1
  166      461     -29  <B 115 56 2 4 59 1
  167      462     -30  <A 116 56 2 4 59 1
  168      463     -29  1 B> 116 56 2 4 59 1
  169      479     -13  1 416 B> 56 2 4 59 1
  170      480     -12  1 417 A> 55 2 4 59 1
  171      481     -13  1 417 <B 4 54 2 4 59 1
  172      498     -30  1 <B 117 4 54 2 4 59 1
  173      499     -29  4 B> 117 4 54 2 4 59 1
  174      516     -12  418 B> 4 54 2 4 59 1
  175      517     -13  418 <B 1 54 2 4 59 1
  176      535     -31  <B 119 54 2 4 59 1
  177      536     -32  <A 120 54 2 4 59 1
  178      537     -31  1 B> 120 54 2 4 59 1
  179      557     -11  1 420 B> 54 2 4 59 1
  180      558     -10  1 421 A> 53 2 4 59 1
  181      559     -11  1 421 <B 4 52 2 4 59 1
  182      580     -32  1 <B 121 4 52 2 4 59 1
  183      581     -31  4 B> 121 4 52 2 4 59 1
  184      602     -10  422 B> 4 52 2 4 59 1
  185      603     -11  422 <B 1 52 2 4 59 1
  186      625     -33  <B 123 52 2 4 59 1
  187      626     -34  <A 124 52 2 4 59 1
  188      627     -33  1 B> 124 52 2 4 59 1
  189      651      -9  1 424 B> 52 2 4 59 1
  190      652      -8  1 425 A> 5 2 4 59 1
  191      653      -9  1 425 <B 4 2 4 59 1
  192      678     -34  1 <B 125 4 2 4 59 1
  193      679     -33  4 B> 125 4 2 4 59 1
  194      704      -8  426 B> 4 2 4 59 1
  195      705      -9  426 <B 1 2 4 59 1
  196      731     -35  <B 127 2 4 59 1
  197      732     -36  <A 128 2 4 59 1
  198      733     -35  1 B> 128 2 4 59 1
  199      761      -7  1 428 B> 2 4 59 1
  200      762      -6  1 428 3 B> 4 59 1

Lines:       201
Top steps:   200
Macro steps: 200
Basic steps: 762
Tape index:  -6
nonzeros:    41
log10(nonzeros):    1.613
log10(steps   ):    2.882

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    nbs 6
    T 2-state 6-symbol #g (T.J. & S. Ligocki)
    : >1.9x10^4933 >2.4x10^9866
    C This is the currently best known 2x6 TM
    5T  1RB 2LA 1RH 5LB 5LA 4LB  1LA 4RB 3RB 5LB 1LB 4RA
    L 44
    M	201
    pref	sim
    machv Lig26_g  	just simple
    machv Lig26_g-r	with repetitions reduced
    machv Lig26_g-1	with tape symbol exponents
    machv Lig26_g-m	as 1-macro machine
    machv Lig26_g-a	as 1-macro machine with pure additive config-TRs
    iam	Lig26_g-m
    mtype	1
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:13:24 CEST 2010
    edate	Tue Jul  6 22:13:24 CEST 2010
    bnspeed	1
    short	7

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:13:24 CEST 2010
Ready: Tue Jul 6 22:13:24 CEST 2010