Comment: This TM produces >1.9x10^4933 nonzeros in >2.4x10^9866 steps. Comment: This is the currently best known 2x6 TM
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 5 |
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||||
| A | 1RB | 2LA | 1RH | 5LB | 5LA | 4LB | 1 | right | B | 2 | left | A | 1 | right | H | 5 | left | B | 5 | left | A | 4 | left | B |
| B | 1LA | 4RB | 3RB | 5LB | 1LB | 4RA | 1 | left | A | 4 | right | B | 3 | right | B | 5 | left | B | 1 | left | B | 4 | right | A |
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Pushing initial machine.
Pushing macro factor 1.
Steps BasSteps BasTpos Tape contents
0 0 0 A>
1 1 1 1 B>
2 2 0 1 <A 1
3 3 -1 <A 2 1
4 4 0 1 B> 2 1
5 5 1 1 3 B> 1
6 6 2 1 3 4 B>
7 7 1 1 3 4 <A 1
8 8 0 1 3 <A 5 1
9 9 -1 1 <B 52 1
10 10 0 4 B> 52 1
11 11 1 42 A> 5 1
12 12 0 42 <B 4 1
13 14 -2 <B 12 4 1
14 15 -3 <A 13 4 1
15 16 -2 1 B> 13 4 1
16 19 1 1 43 B> 4 1
17 20 0 1 43 <B 12
18 23 -3 1 <B 15
19 24 -2 4 B> 15
20 29 3 46 B>
21 30 2 46 <A 1
22 36 -4 <A 56 1
23 37 -3 1 B> 56 1
24 38 -2 1 4 A> 55 1
25 39 -3 1 4 <B 4 54 1
26 40 -4 1 <B 1 4 54 1
27 41 -3 4 B> 1 4 54 1
28 42 -2 42 B> 4 54 1
29 43 -3 42 <B 1 54 1
30 45 -5 <B 13 54 1
31 46 -6 <A 14 54 1
32 47 -5 1 B> 14 54 1
33 51 -1 1 44 B> 54 1
34 52 0 1 45 A> 53 1
35 53 -1 1 45 <B 4 52 1
36 58 -6 1 <B 15 4 52 1
37 59 -5 4 B> 15 4 52 1
38 64 0 46 B> 4 52 1
39 65 -1 46 <B 1 52 1
40 71 -7 <B 17 52 1
41 72 -8 <A 18 52 1
42 73 -7 1 B> 18 52 1
43 81 1 1 48 B> 52 1
44 82 2 1 49 A> 5 1
45 83 1 1 49 <B 4 1
46 92 -8 1 <B 19 4 1
47 93 -7 4 B> 19 4 1
48 102 2 410 B> 4 1
49 103 1 410 <B 12
50 113 -9 <B 112
51 114 -10 <A 113
52 115 -9 1 B> 113
53 128 4 1 413 B>
54 129 3 1 413 <A 1
55 142 -10 1 <A 513 1
56 143 -11 <A 2 513 1
57 144 -10 1 B> 2 513 1
58 145 -9 1 3 B> 513 1
59 146 -8 1 3 4 A> 512 1
60 147 -9 1 3 4 <B 4 511 1
61 148 -10 1 3 <B 1 4 511 1
62 149 -11 1 <B 5 1 4 511 1
63 150 -10 4 B> 5 1 4 511 1
64 151 -9 42 A> 1 4 511 1
65 152 -10 42 <A 2 4 511 1
66 154 -12 <A 52 2 4 511 1
67 155 -11 1 B> 52 2 4 511 1
68 156 -10 1 4 A> 5 2 4 511 1
69 157 -11 1 4 <B 4 2 4 511 1
70 158 -12 1 <B 1 4 2 4 511 1
71 159 -11 4 B> 1 4 2 4 511 1
72 160 -10 42 B> 4 2 4 511 1
73 161 -11 42 <B 1 2 4 511 1
74 163 -13 <B 13 2 4 511 1
75 164 -14 <A 14 2 4 511 1
76 165 -13 1 B> 14 2 4 511 1
77 169 -9 1 44 B> 2 4 511 1
78 170 -8 1 44 3 B> 4 511 1
79 171 -9 1 44 3 <B 1 511 1
80 172 -10 1 44 <B 5 1 511 1
81 176 -14 1 <B 14 5 1 511 1
82 177 -13 4 B> 14 5 1 511 1
83 181 -9 45 B> 5 1 511 1
84 182 -8 46 A> 1 511 1
85 183 -9 46 <A 2 511 1
86 189 -15 <A 56 2 511 1
87 190 -14 1 B> 56 2 511 1
88 191 -13 1 4 A> 55 2 511 1
89 192 -14 1 4 <B 4 54 2 511 1
90 193 -15 1 <B 1 4 54 2 511 1
91 194 -14 4 B> 1 4 54 2 511 1
92 195 -13 42 B> 4 54 2 511 1
93 196 -14 42 <B 1 54 2 511 1
94 198 -16 <B 13 54 2 511 1
95 199 -17 <A 14 54 2 511 1
96 200 -16 1 B> 14 54 2 511 1
97 204 -12 1 44 B> 54 2 511 1
98 205 -11 1 45 A> 53 2 511 1
99 206 -12 1 45 <B 4 52 2 511 1
100 211 -17 1 <B 15 4 52 2 511 1
101 212 -16 4 B> 15 4 52 2 511 1
102 217 -11 46 B> 4 52 2 511 1
103 218 -12 46 <B 1 52 2 511 1
104 224 -18 <B 17 52 2 511 1
105 225 -19 <A 18 52 2 511 1
106 226 -18 1 B> 18 52 2 511 1
107 234 -10 1 48 B> 52 2 511 1
108 235 -9 1 49 A> 5 2 511 1
109 236 -10 1 49 <B 4 2 511 1
110 245 -19 1 <B 19 4 2 511 1
111 246 -18 4 B> 19 4 2 511 1
112 255 -9 410 B> 4 2 511 1
113 256 -10 410 <B 1 2 511 1
114 266 -20 <B 111 2 511 1
115 267 -21 <A 112 2 511 1
116 268 -20 1 B> 112 2 511 1
117 280 -8 1 412 B> 2 511 1
118 281 -7 1 412 3 B> 511 1
119 282 -6 1 412 3 4 A> 510 1
120 283 -7 1 412 3 4 <B 4 59 1
121 284 -8 1 412 3 <B 1 4 59 1
122 285 -9 1 412 <B 5 1 4 59 1
123 297 -21 1 <B 112 5 1 4 59 1
124 298 -20 4 B> 112 5 1 4 59 1
125 310 -8 413 B> 5 1 4 59 1
126 311 -7 414 A> 1 4 59 1
127 312 -8 414 <A 2 4 59 1
128 326 -22 <A 514 2 4 59 1
129 327 -21 1 B> 514 2 4 59 1
130 328 -20 1 4 A> 513 2 4 59 1
131 329 -21 1 4 <B 4 512 2 4 59 1
132 330 -22 1 <B 1 4 512 2 4 59 1
133 331 -21 4 B> 1 4 512 2 4 59 1
134 332 -20 42 B> 4 512 2 4 59 1
135 333 -21 42 <B 1 512 2 4 59 1
136 335 -23 <B 13 512 2 4 59 1
137 336 -24 <A 14 512 2 4 59 1
138 337 -23 1 B> 14 512 2 4 59 1
139 341 -19 1 44 B> 512 2 4 59 1
140 342 -18 1 45 A> 511 2 4 59 1
141 343 -19 1 45 <B 4 510 2 4 59 1
142 348 -24 1 <B 15 4 510 2 4 59 1
143 349 -23 4 B> 15 4 510 2 4 59 1
144 354 -18 46 B> 4 510 2 4 59 1
145 355 -19 46 <B 1 510 2 4 59 1
146 361 -25 <B 17 510 2 4 59 1
147 362 -26 <A 18 510 2 4 59 1
148 363 -25 1 B> 18 510 2 4 59 1
149 371 -17 1 48 B> 510 2 4 59 1
150 372 -16 1 49 A> 59 2 4 59 1
151 373 -17 1 49 <B 4 58 2 4 59 1
152 382 -26 1 <B 19 4 58 2 4 59 1
153 383 -25 4 B> 19 4 58 2 4 59 1
154 392 -16 410 B> 4 58 2 4 59 1
155 393 -17 410 <B 1 58 2 4 59 1
156 403 -27 <B 111 58 2 4 59 1
157 404 -28 <A 112 58 2 4 59 1
158 405 -27 1 B> 112 58 2 4 59 1
159 417 -15 1 412 B> 58 2 4 59 1
160 418 -14 1 413 A> 57 2 4 59 1
161 419 -15 1 413 <B 4 56 2 4 59 1
162 432 -28 1 <B 113 4 56 2 4 59 1
163 433 -27 4 B> 113 4 56 2 4 59 1
164 446 -14 414 B> 4 56 2 4 59 1
165 447 -15 414 <B 1 56 2 4 59 1
166 461 -29 <B 115 56 2 4 59 1
167 462 -30 <A 116 56 2 4 59 1
168 463 -29 1 B> 116 56 2 4 59 1
169 479 -13 1 416 B> 56 2 4 59 1
170 480 -12 1 417 A> 55 2 4 59 1
171 481 -13 1 417 <B 4 54 2 4 59 1
172 498 -30 1 <B 117 4 54 2 4 59 1
173 499 -29 4 B> 117 4 54 2 4 59 1
174 516 -12 418 B> 4 54 2 4 59 1
175 517 -13 418 <B 1 54 2 4 59 1
176 535 -31 <B 119 54 2 4 59 1
177 536 -32 <A 120 54 2 4 59 1
178 537 -31 1 B> 120 54 2 4 59 1
179 557 -11 1 420 B> 54 2 4 59 1
180 558 -10 1 421 A> 53 2 4 59 1
181 559 -11 1 421 <B 4 52 2 4 59 1
182 580 -32 1 <B 121 4 52 2 4 59 1
183 581 -31 4 B> 121 4 52 2 4 59 1
184 602 -10 422 B> 4 52 2 4 59 1
185 603 -11 422 <B 1 52 2 4 59 1
186 625 -33 <B 123 52 2 4 59 1
187 626 -34 <A 124 52 2 4 59 1
188 627 -33 1 B> 124 52 2 4 59 1
189 651 -9 1 424 B> 52 2 4 59 1
190 652 -8 1 425 A> 5 2 4 59 1
191 653 -9 1 425 <B 4 2 4 59 1
192 678 -34 1 <B 125 4 2 4 59 1
193 679 -33 4 B> 125 4 2 4 59 1
194 704 -8 426 B> 4 2 4 59 1
195 705 -9 426 <B 1 2 4 59 1
196 731 -35 <B 127 2 4 59 1
197 732 -36 <A 128 2 4 59 1
198 733 -35 1 B> 128 2 4 59 1
199 761 -7 1 428 B> 2 4 59 1
200 762 -6 1 428 3 B> 4 59 1
Lines: 201
Top steps: 200
Macro steps: 200
Basic steps: 762
Tape index: -6
nonzeros: 41
log10(nonzeros): 1.613
log10(steps ): 2.882
Input to awk program:
gohalt 1
nbs 6
T 2-state 6-symbol #g (T.J. & S. Ligocki)
: >1.9x10^4933 >2.4x10^9866
C This is the currently best known 2x6 TM
5T 1RB 2LA 1RH 5LB 5LA 4LB 1LA 4RB 3RB 5LB 1LB 4RA
L 44
M 201
pref sim
machv Lig26_g just simple
machv Lig26_g-r with repetitions reduced
machv Lig26_g-1 with tape symbol exponents
machv Lig26_g-m as 1-macro machine
machv Lig26_g-a as 1-macro machine with pure additive config-TRs
iam Lig26_g-m
mtype 1
mmtyp 1
r 1
H 1
mac 0
E 2
sympr
HM 1
date Tue Jul 6 22:13:24 CEST 2010
edate Tue Jul 6 22:13:24 CEST 2010
bnspeed 1
short 7
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $
$Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $
$Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $
$Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $
$Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $
$Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $
bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:13:24 CEST 2010