2-state 6-symbol #g (T.J. & S. Ligocki)

Comment: This TM produces >1.9x10^4933 nonzeros in >2.4x10^9866 steps.
Comment: This is the currently best known 2x6 TM

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on
5
on 0 on 1 on 2 on 3 on 4 on 5
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 2LA 1RH 5LB 5LA 4LB 1 right B 2 left A 1 right H 5 left B 5 left A 4 left B
B 1LA 4RB 3RB 5LB 1LB 4RA 1 left A 4 right B 3 right B 5 left B 1 left B 4 right A
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     0  1 <A 1
     3    -1  <A 2 1
     4     0  1 B> 2 1
     5     1  1 3 B> 1
     6     2  1 3 4 B>
     7     1  1 3 4 <A 1
     8     0  1 3 <A 5 1
     9    -1  1 <B 5 5 1
    10     0  4 B> 5 5 1
    11     1  4 4 A> 5 1
    12     0  4 4 <B 4 1
+   14    -2  <B 1 1 4 1
    15    -3  <A 13 4 1
    16    -2  1 B> 13 4 1
+   19     1  1 43 B> 4 1
    20     0  1 43 <B 1 1
+   23    -3  1 <B 15
    24    -2  4 B> 15
+   29     3  46 B>
    30     2  46 <A 1
+   36    -4  <A 56 1
    37    -3  1 B> 56 1
    38    -2  1 4 A> 55 1
    39    -3  1 4 <B 4 54 1
    40    -4  1 <B 1 4 54 1
    41    -3  4 B> 1 4 54 1
    42    -2  4 4 B> 4 54 1
    43    -3  4 4 <B 1 54 1
+   45    -5  <B 13 54 1
    46    -6  <A 14 54 1
    47    -5  1 B> 14 54 1
+   51    -1  1 44 B> 54 1
    52     0  1 45 A> 53 1
    53    -1  1 45 <B 4 5 5 1
+   58    -6  1 <B 15 4 5 5 1
    59    -5  4 B> 15 4 5 5 1
+   64     0  46 B> 4 5 5 1
    65    -1  46 <B 1 5 5 1
+   71    -7  <B 17 5 5 1
    72    -8  <A 18 5 5 1
    73    -7  1 B> 18 5 5 1
+   81     1  1 48 B> 5 5 1
    82     2  1 49 A> 5 1
    83     1  1 49 <B 4 1
+   92    -8  1 <B 19 4 1
    93    -7  4 B> 19 4 1
+  102     2  410 B> 4 1
   103     1  410 <B 1 1
+  113    -9  <B 112
   114   -10  <A 113
   115    -9  1 B> 113
+  128     4  1 413 B>
   129     3  1 413 <A 1
+  142   -10  1 <A 513 1
   143   -11  <A 2 513 1
   144   -10  1 B> 2 513 1
   145    -9  1 3 B> 513 1
   146    -8  1 3 4 A> 512 1
   147    -9  1 3 4 <B 4 511 1
   148   -10  1 3 <B 1 4 511 1
   149   -11  1 <B 5 1 4 511 1
   150   -10  4 B> 5 1 4 511 1
   151    -9  4 4 A> 1 4 511 1
   152   -10  4 4 <A 2 4 511 1
+  154   -12  <A 5 5 2 4 511 1
   155   -11  1 B> 5 5 2 4 511 1
   156   -10  1 4 A> 5 2 4 511 1
   157   -11  1 4 <B 4 2 4 511 1
   158   -12  1 <B 1 4 2 4 511 1
   159   -11  4 B> 1 4 2 4 511 1
   160   -10  4 4 B> 4 2 4 511 1
   161   -11  4 4 <B 1 2 4 511 1
+  163   -13  <B 13 2 4 511 1
   164   -14  <A 14 2 4 511 1
   165   -13  1 B> 14 2 4 511 1
+  169    -9  1 44 B> 2 4 511 1
   170    -8  1 44 3 B> 4 511 1
   171    -9  1 44 3 <B 1 511 1
   172   -10  1 44 <B 5 1 511 1
+  176   -14  1 <B 14 5 1 511 1
   177   -13  4 B> 14 5 1 511 1
+  181    -9  45 B> 5 1 511 1
   182    -8  46 A> 1 511 1
   183    -9  46 <A 2 511 1
+  189   -15  <A 56 2 511 1
   190   -14  1 B> 56 2 511 1
   191   -13  1 4 A> 55 2 511 1
   192   -14  1 4 <B 4 54 2 511 1
   193   -15  1 <B 1 4 54 2 511 1
   194   -14  4 B> 1 4 54 2 511 1
   195   -13  4 4 B> 4 54 2 511 1
   196   -14  4 4 <B 1 54 2 511 1
+  198   -16  <B 13 54 2 511 1
   199   -17  <A 14 54 2 511 1
   200   -16  1 B> 14 54 2 511 1
+  204   -12  1 44 B> 54 2 511 1
   205   -11  1 45 A> 53 2 511 1
   206   -12  1 45 <B 4 5 5 2 511 1
+  211   -17  1 <B 15 4 5 5 2 511 1
   212   -16  4 B> 15 4 5 5 2 511 1
+  217   -11  46 B> 4 5 5 2 511 1
   218   -12  46 <B 1 5 5 2 511 1
+  224   -18  <B 17 5 5 2 511 1
   225   -19  <A 18 5 5 2 511 1
   226   -18  1 B> 18 5 5 2 511 1
+  234   -10  1 48 B> 5 5 2 511 1
   235    -9  1 49 A> 5 2 511 1
   236   -10  1 49 <B 4 2 511 1
+  245   -19  1 <B 19 4 2 511 1
   246   -18  4 B> 19 4 2 511 1
+  255    -9  410 B> 4 2 511 1
   256   -10  410 <B 1 2 511 1
+  266   -20  <B 111 2 511 1
   267   -21  <A 112 2 511 1
   268   -20  1 B> 112 2 511 1
+  280    -8  1 412 B> 2 511 1
   281    -7  1 412 3 B> 511 1
   282    -6  1 412 3 4 A> 510 1
   283    -7  1 412 3 4 <B 4 59 1
   284    -8  1 412 3 <B 1 4 59 1
   285    -9  1 412 <B 5 1 4 59 1
+  297   -21  1 <B 112 5 1 4 59 1
   298   -20  4 B> 112 5 1 4 59 1
+  310    -8  413 B> 5 1 4 59 1
   311    -7  414 A> 1 4 59 1
   312    -8  414 <A 2 4 59 1
+  326   -22  <A 514 2 4 59 1
   327   -21  1 B> 514 2 4 59 1
   328   -20  1 4 A> 513 2 4 59 1
   329   -21  1 4 <B 4 512 2 4 59 1
   330   -22  1 <B 1 4 512 2 4 59 1
   331   -21  4 B> 1 4 512 2 4 59 1
   332   -20  4 4 B> 4 512 2 4 59 1
   333   -21  4 4 <B 1 512 2 4 59 1
+  335   -23  <B 13 512 2 4 59 1
   336   -24  <A 14 512 2 4 59 1
   337   -23  1 B> 14 512 2 4 59 1
+  341   -19  1 44 B> 512 2 4 59 1
   342   -18  1 45 A> 511 2 4 59 1
   343   -19  1 45 <B 4 510 2 4 59 1
+  348   -24  1 <B 15 4 510 2 4 59 1
   349   -23  4 B> 15 4 510 2 4 59 1
+  354   -18  46 B> 4 510 2 4 59 1
   355   -19  46 <B 1 510 2 4 59 1
+  361   -25  <B 17 510 2 4 59 1
   362   -26  <A 18 510 2 4 59 1
   363   -25  1 B> 18 510 2 4 59 1
+  371   -17  1 48 B> 510 2 4 59 1
   372   -16  1 49 A> 59 2 4 59 1
   373   -17  1 49 <B 4 58 2 4 59 1
+  382   -26  1 <B 19 4 58 2 4 59 1
   383   -25  4 B> 19 4 58 2 4 59 1
+  392   -16  410 B> 4 58 2 4 59 1
   393   -17  410 <B 1 58 2 4 59 1
+  403   -27  <B 111 58 2 4 59 1
   404   -28  <A 112 58 2 4 59 1
   405   -27  1 B> 112 58 2 4 59 1
+  417   -15  1 412 B> 58 2 4 59 1
   418   -14  1 413 A> 57 2 4 59 1
   419   -15  1 413 <B 4 56 2 4 59 1
+  432   -28  1 <B 113 4 56 2 4 59 1
   433   -27  4 B> 113 4 56 2 4 59 1
+  446   -14  414 B> 4 56 2 4 59 1
   447   -15  414 <B 1 56 2 4 59 1
+  461   -29  <B 115 56 2 4 59 1
   462   -30  <A 116 56 2 4 59 1
   463   -29  1 B> 116 56 2 4 59 1
+  479   -13  1 416 B> 56 2 4 59 1
   480   -12  1 417 A> 55 2 4 59 1
   481   -13  1 417 <B 4 54 2 4 59 1
+  498   -30  1 <B 117 4 54 2 4 59 1
   499   -29  4 B> 117 4 54 2 4 59 1
+  516   -12  418 B> 4 54 2 4 59 1
   517   -13  418 <B 1 54 2 4 59 1
+  535   -31  <B 119 54 2 4 59 1
   536   -32  <A 120 54 2 4 59 1
   537   -31  1 B> 120 54 2 4 59 1
+  557   -11  1 420 B> 54 2 4 59 1
   558   -10  1 421 A> 53 2 4 59 1
   559   -11  1 421 <B 4 5 5 2 4 59 1
+  580   -32  1 <B 121 4 5 5 2 4 59 1
   581   -31  4 B> 121 4 5 5 2 4 59 1
+  602   -10  422 B> 4 5 5 2 4 59 1
   603   -11  422 <B 1 5 5 2 4 59 1
+  625   -33  <B 123 5 5 2 4 59 1
   626   -34  <A 124 5 5 2 4 59 1
   627   -33  1 B> 124 5 5 2 4 59 1
+  651    -9  1 424 B> 5 5 2 4 59 1
   652    -8  1 425 A> 5 2 4 59 1
   653    -9  1 425 <B 4 2 4 59 1
+  678   -34  1 <B 125 4 2 4 59 1
   679   -33  4 B> 125 4 2 4 59 1
+  704    -8  426 B> 4 2 4 59 1
   705    -9  426 <B 1 2 4 59 1
+  731   -35  <B 127 2 4 59 1
   732   -36  <A 128 2 4 59 1
   733   -35  1 B> 128 2 4 59 1
+  761    -7  1 428 B> 2 4 59 1
   762    -6  1 428 3 B> 4 59 1

After 762 steps (201 lines): state = B.
Produced     41 nonzeros.
Tape index -6, scanned [-36 .. 4].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 5 on 0 on 1 on 2 on 3 on 4 on 5
A 87 22 5   1 42 17 0 2   8 7 11
B 675 19 331 5 3 297 20 1 5 4 148 12 10
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:13:24 CEST 2010