2-state 6-symbol #f (T.J. & S. Ligocki)

Comment: This TM produces >6.9x10^4931 nonzeros in >2.5x10^9863 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on
5
on 0 on 1 on 2 on 3 on 4 on 5
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 1LB 3RA 4LA 2LA 4LB 1 right B 1 left B 3 right A 4 left A 2 left A 4 left B
B 2LA 2RB 3LB 1LA 5RA 1RH 2 left A 2 right B 3 left B 1 left A 5 right A 1 right H
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . . . . . . . . . 0
     1    1 B . . . . . . . . . . 10
     2    0 A . . . . . . . . . . 12
     3   -1 B . . . . . . . . . .012
     4   -2 A . . . . . . . . . 0212
     5   -1 B . . . . . . . . . 1212
     6   -2 B . . . . . . . . . 1312
     7   -1 B . . . . . . . . . 2312
     8   -2 A . . . . . . . . . 2112
     9   -1 A . . . . . . . . . 3112
    10   -2 B . . . . . . . . . 3112
    11   -3 A . . . . . . . . .01112
    12   -2 B . . . . . . . . .11112
    13   -1 B . . . . . . . . .12112
    14    0 B . . . . . . . . .12212
    15    1 B . . . . . . . . .12222
    16    0 B . . . . . . . . .12223
    17   -1 B . . . . . . . . .12233
    18   -2 B . . . . . . . . .12333
    19   -3 B . . . . . . . . .13333
    20   -2 B . . . . . . . . .23333
    21   -3 A . . . . . . . . .21333
    22   -2 A . . . . . . . . .31333
    23   -3 B . . . . . . . . .31333
    24   -4 A . . . . . . . . 011333
    25   -3 B . . . . . . . . 111333
    26   -2 B . . . . . . . . 121333
    27   -1 B . . . . . . . . 122333
    28   -2 A . . . . . . . . 122133
    29   -1 A . . . . . . . . 123133
    30   -2 B . . . . . . . . 123133
    31   -3 A . . . . . . . . 121133
    32   -2 A . . . . . . . . 131133
    33   -3 B . . . . . . . . 131133
    34   -4 A . . . . . . . . 111133
    35   -5 B . . . . . . . .0111133
    36   -6 A . . . . . . . 02111133
    37   -5 B . . . . . . . 12111133
    38   -6 B . . . . . . . 13111133
    39   -5 B . . . . . . . 23111133
    40   -6 A . . . . . . . 21111133
    41   -5 A . . . . . . . 31111133
    42   -6 B . . . . . . . 31111133
    43   -7 A . . . . . . .011111133
    44   -6 B . . . . . . .111111133
    45   -5 B . . . . . . .121111133
    46   -4 B . . . . . . .122111133
    47   -3 B . . . . . . .122211133
    48   -2 B . . . . . . .122221133
    49   -1 B . . . . . . .122222133
    50    0 B . . . . . . .122222233
    51   -1 A . . . . . . .122222213
    52    0 A . . . . . . .122222313
    53   -1 B . . . . . . .122222313
    54   -2 A . . . . . . .122222113
    55   -1 A . . . . . . .122223113
    56   -2 B . . . . . . .122223113
    57   -3 A . . . . . . .122221113
    58   -2 A . . . . . . .122231113
    59   -3 B . . . . . . .122231113
    60   -4 A . . . . . . .122211113
    61   -3 A . . . . . . .122311113
    62   -4 B . . . . . . .122311113
    63   -5 A . . . . . . .122111113
    64   -4 A . . . . . . .123111113
    65   -5 B . . . . . . .123111113
    66   -6 A . . . . . . .121111113
    67   -5 A . . . . . . .131111113
    68   -6 B . . . . . . .131111113
    69   -7 A . . . . . . .111111113
    70   -8 B . . . . . . 0111111113
    71   -9 A . . . . . .02111111113
    72   -8 B . . . . . .12111111113
    73   -9 B . . . . . .13111111113
    74   -8 B . . . . . .23111111113
    75   -9 A . . . . . .21111111113
    76   -8 A . . . . . .31111111113
    77   -9 B . . . . . .31111111113
    78  -10 A . . . . . 011111111113
    79   -9 B . . . . . 111111111113
    80   -8 B . . . . . 121111111113
    81   -7 B . . . . . 122111111113
    82   -6 B . . . . . 122211111113
    83   -5 B . . . . . 122221111113
    84   -4 B . . . . . 122222111113
    85   -3 B . . . . . 122222211113
    86   -2 B . . . . . 122222221113
    87   -1 B . . . . . 122222222113
    88    0 B . . . . . 122222222213
    89    1 B . . . . . 122222222223
    90    0 A . . . . . 122222222221
    91    1 A . . . . . 122222222231
    92    0 B . . . . . 122222222231
    93   -1 A . . . . . 122222222211
    94    0 A . . . . . 122222222311
    95   -1 B . . . . . 122222222311
    96   -2 A . . . . . 122222222111
    97   -1 A . . . . . 122222223111
    98   -2 B . . . . . 122222223111
    99   -3 A . . . . . 122222221111
   100   -2 A . . . . . 122222231111
   101   -3 B . . . . . 122222231111
   102   -4 A . . . . . 122222211111
   103   -3 A . . . . . 122222311111
   104   -4 B . . . . . 122222311111
   105   -5 A . . . . . 122222111111
   106   -4 A . . . . . 122223111111
   107   -5 B . . . . . 122223111111
   108   -6 A . . . . . 122221111111
   109   -5 A . . . . . 122231111111
   110   -6 B . . . . . 122231111111
   111   -7 A . . . . . 122211111111
   112   -6 A . . . . . 122311111111
   113   -7 B . . . . . 122311111111
   114   -8 A . . . . . 122111111111
   115   -7 A . . . . . 123111111111
   116   -8 B . . . . . 123111111111
   117   -9 A . . . . . 121111111111
   118   -8 A . . . . . 131111111111
   119   -9 B . . . . . 131111111111
   120  -10 A . . . . . 111111111111
   121  -11 B . . . . .0111111111111
   122  -12 A . . . . 02111111111111
   123  -11 B . . . . 12111111111111
   124  -12 B . . . . 13111111111111
   125  -11 B . . . . 23111111111111
   126  -12 A . . . . 21111111111111
   127  -11 A . . . . 31111111111111
   128  -12 B . . . . 31111111111111
   129  -13 A . . . .011111111111111
   130  -12 B . . . .111111111111111
   131  -11 B . . . .121111111111111
   132  -10 B . . . .122111111111111
   133   -9 B . . . .122211111111111
   134   -8 B . . . .122221111111111
   135   -7 B . . . .122222111111111
   136   -6 B . . . .122222211111111
   137   -5 B . . . .122222221111111
   138   -4 B . . . .122222222111111
   139   -3 B . . . .122222222211111
   140   -2 B . . . .122222222221111
   141   -1 B . . . .122222222222111
   142    0 B . . . .122222222222211
   143    1 B . . . .122222222222221
   144    2 B . . . .1222222222222220
   145    1 A . . . .1222222222222222
   146    2 A . . . .1222222222222232
   147    3 A . . . .12222222222222330
   148    4 B . . . .122222222222223310
   149    3 A . . . .122222222222223312
   150    2 B . . . .122222222222223312
   151    1 A . . . .122222222222223112
   152    0 A . . . .122222222222224112
   153    1 A . . . .122222222222234112
   154    0 A . . . .122222222222232112
   155   -1 A . . . .122222222222242112
   156    0 A . . . .122222222222342112
   157   -1 A . . . .122222222222322112
   158   -2 A . . . .122222222222422112
   159   -1 A . . . .122222222223422112
   160   -2 A . . . .122222222223222112
   161   -3 A . . . .122222222224222112
   162   -2 A . . . .122222222234222112
   163   -3 A . . . .122222222232222112
   164   -4 A . . . .122222222242222112
   165   -3 A . . . .122222222342222112
   166   -4 A . . . .122222222322222112
   167   -5 A . . . .122222222422222112
   168   -4 A . . . .122222223422222112
   169   -5 A . . . .122222223222222112
   170   -6 A . . . .122222224222222112
   171   -5 A . . . .122222234222222112
   172   -6 A . . . .122222232222222112
   173   -7 A . . . .122222242222222112
   174   -6 A . . . .122222342222222112
   175   -7 A . . . .122222322222222112
   176   -8 A . . . .122222422222222112
   177   -7 A . . . .122223422222222112
   178   -8 A . . . .122223222222222112
   179   -9 A . . . .122224222222222112
   180   -8 A . . . .122234222222222112
   181   -9 A . . . .122232222222222112
   182  -10 A . . . .122242222222222112
   183   -9 A . . . .122342222222222112
   184  -10 A . . . .122322222222222112
   185  -11 A . . . .122422222222222112
   186  -10 A . . . .123422222222222112
   187  -11 A . . . .123222222222222112
   188  -12 A . . . .124222222222222112
   189  -11 A . . . .134222222222222112
   190  -12 A . . . .132222222222222112
   191  -13 A . . . .142222222222222112
   192  -14 B . . . 0142222222222222112
   193  -15 A . . .02142222222222222112
   194  -14 B . . .12142222222222222112
   195  -15 B . . .13142222222222222112
   196  -14 B . . .23142222222222222112
   197  -15 A . . .21142222222222222112
   198  -14 A . . .31142222222222222112
   199  -15 B . . .31142222222222222112
   200  -16 A . . 011142222222222222112

After 200 steps (201 lines): state = A.
Produced     20 nonzeros.
Tape index -16, scanned [-15 .. 4].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 5 on 0 on 1 on 2 on 3 on 4 on 5
A 108 12 30 39 14 13   0 2 8 151 153  
B 92 8 41 9 34     1 6 5 7    
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:13:21 CEST 2010