Comment: This TM produces >6.9x10^4931 nonzeros in >2.5x10^9863 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 5 |
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||||
| A | 1RB | 1LB | 3RA | 4LA | 2LA | 4LB | 1 | right | B | 1 | left | B | 3 | right | A | 4 | left | A | 2 | left | A | 4 | left | B |
| B | 2LA | 2RB | 3LB | 1LA | 5RA | 1RH | 2 | left | A | 2 | right | B | 3 | left | B | 1 | left | A | 5 | right | A | 1 | right | H |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A 2
3 -1 <B 1 2
4 -2 <A 2 1 2
5 -1 1 B> 2 1 2
6 -2 1 <B 3 1 2
7 -1 2 B> 3 1 2
8 -2 2 <A 1 1 2
9 -1 3 A> 1 1 2
10 -2 3 <B 1 1 2
11 -3 <A 13 2
12 -2 1 B> 13 2
+ 15 1 1 23 B> 2
16 0 1 23 <B 3
+ 19 -3 1 <B 34
20 -2 2 B> 34
21 -3 2 <A 1 33
22 -2 3 A> 1 33
23 -3 3 <B 1 33
24 -4 <A 1 1 33
25 -3 1 B> 1 1 33
+ 27 -1 1 2 2 B> 33
28 -2 1 2 2 <A 1 3 3
29 -1 1 2 3 A> 1 3 3
30 -2 1 2 3 <B 1 3 3
31 -3 1 2 <A 1 1 3 3
32 -2 1 3 A> 1 1 3 3
33 -3 1 3 <B 1 1 3 3
34 -4 1 <A 13 3 3
35 -5 <B 14 3 3
36 -6 <A 2 14 3 3
37 -5 1 B> 2 14 3 3
38 -6 1 <B 3 14 3 3
39 -5 2 B> 3 14 3 3
40 -6 2 <A 15 3 3
41 -5 3 A> 15 3 3
42 -6 3 <B 15 3 3
43 -7 <A 16 3 3
44 -6 1 B> 16 3 3
+ 50 0 1 26 B> 3 3
51 -1 1 26 <A 1 3
52 0 1 25 3 A> 1 3
53 -1 1 25 3 <B 1 3
54 -2 1 25 <A 1 1 3
55 -1 1 24 3 A> 1 1 3
56 -2 1 24 3 <B 1 1 3
57 -3 1 24 <A 13 3
58 -2 1 23 3 A> 13 3
59 -3 1 23 3 <B 13 3
60 -4 1 23 <A 14 3
61 -3 1 2 2 3 A> 14 3
62 -4 1 2 2 3 <B 14 3
63 -5 1 2 2 <A 15 3
64 -4 1 2 3 A> 15 3
65 -5 1 2 3 <B 15 3
66 -6 1 2 <A 16 3
67 -5 1 3 A> 16 3
68 -6 1 3 <B 16 3
69 -7 1 <A 17 3
70 -8 <B 18 3
71 -9 <A 2 18 3
72 -8 1 B> 2 18 3
73 -9 1 <B 3 18 3
74 -8 2 B> 3 18 3
75 -9 2 <A 19 3
76 -8 3 A> 19 3
77 -9 3 <B 19 3
78 -10 <A 110 3
79 -9 1 B> 110 3
+ 89 1 1 210 B> 3
90 0 1 210 <A 1
91 1 1 29 3 A> 1
92 0 1 29 3 <B 1
93 -1 1 29 <A 1 1
94 0 1 28 3 A> 1 1
95 -1 1 28 3 <B 1 1
96 -2 1 28 <A 13
97 -1 1 27 3 A> 13
98 -2 1 27 3 <B 13
99 -3 1 27 <A 14
100 -2 1 26 3 A> 14
101 -3 1 26 3 <B 14
102 -4 1 26 <A 15
103 -3 1 25 3 A> 15
104 -4 1 25 3 <B 15
105 -5 1 25 <A 16
106 -4 1 24 3 A> 16
107 -5 1 24 3 <B 16
108 -6 1 24 <A 17
109 -5 1 23 3 A> 17
110 -6 1 23 3 <B 17
111 -7 1 23 <A 18
112 -6 1 2 2 3 A> 18
113 -7 1 2 2 3 <B 18
114 -8 1 2 2 <A 19
115 -7 1 2 3 A> 19
116 -8 1 2 3 <B 19
117 -9 1 2 <A 110
118 -8 1 3 A> 110
119 -9 1 3 <B 110
120 -10 1 <A 111
121 -11 <B 112
122 -12 <A 2 112
123 -11 1 B> 2 112
124 -12 1 <B 3 112
125 -11 2 B> 3 112
126 -12 2 <A 113
127 -11 3 A> 113
128 -12 3 <B 113
129 -13 <A 114
130 -12 1 B> 114
+ 144 2 1 214 B>
145 1 1 214 <A 2
146 2 1 213 3 A> 2
147 3 1 213 3 3 A>
148 4 1 213 3 3 1 B>
149 3 1 213 3 3 1 <A 2
150 2 1 213 3 3 <B 1 2
151 1 1 213 3 <A 1 1 2
152 0 1 213 <A 4 1 1 2
153 1 1 212 3 A> 4 1 1 2
154 0 1 212 3 <A 2 1 1 2
155 -1 1 212 <A 4 2 1 1 2
156 0 1 211 3 A> 4 2 1 1 2
157 -1 1 211 3 <A 2 2 1 1 2
158 -2 1 211 <A 4 2 2 1 1 2
159 -1 1 210 3 A> 4 2 2 1 1 2
160 -2 1 210 3 <A 23 1 1 2
161 -3 1 210 <A 4 23 1 1 2
162 -2 1 29 3 A> 4 23 1 1 2
163 -3 1 29 3 <A 24 1 1 2
164 -4 1 29 <A 4 24 1 1 2
165 -3 1 28 3 A> 4 24 1 1 2
166 -4 1 28 3 <A 25 1 1 2
167 -5 1 28 <A 4 25 1 1 2
168 -4 1 27 3 A> 4 25 1 1 2
169 -5 1 27 3 <A 26 1 1 2
170 -6 1 27 <A 4 26 1 1 2
171 -5 1 26 3 A> 4 26 1 1 2
172 -6 1 26 3 <A 27 1 1 2
173 -7 1 26 <A 4 27 1 1 2
174 -6 1 25 3 A> 4 27 1 1 2
175 -7 1 25 3 <A 28 1 1 2
176 -8 1 25 <A 4 28 1 1 2
177 -7 1 24 3 A> 4 28 1 1 2
178 -8 1 24 3 <A 29 1 1 2
179 -9 1 24 <A 4 29 1 1 2
180 -8 1 23 3 A> 4 29 1 1 2
181 -9 1 23 3 <A 210 1 1 2
182 -10 1 23 <A 4 210 1 1 2
183 -9 1 2 2 3 A> 4 210 1 1 2
184 -10 1 2 2 3 <A 211 1 1 2
185 -11 1 2 2 <A 4 211 1 1 2
186 -10 1 2 3 A> 4 211 1 1 2
187 -11 1 2 3 <A 212 1 1 2
188 -12 1 2 <A 4 212 1 1 2
189 -11 1 3 A> 4 212 1 1 2
190 -12 1 3 <A 213 1 1 2
191 -13 1 <A 4 213 1 1 2
192 -14 <B 1 4 213 1 1 2
193 -15 <A 2 1 4 213 1 1 2
194 -14 1 B> 2 1 4 213 1 1 2
195 -15 1 <B 3 1 4 213 1 1 2
196 -14 2 B> 3 1 4 213 1 1 2
197 -15 2 <A 1 1 4 213 1 1 2
198 -14 3 A> 1 1 4 213 1 1 2
199 -15 3 <B 1 1 4 213 1 1 2
200 -16 <A 13 4 213 1 1 2
201 -15 1 B> 13 4 213 1 1 2
+ 204 -12 1 23 B> 4 213 1 1 2
205 -11 1 23 5 A> 213 1 1 2
+ 218 2 1 23 5 313 A> 1 1 2
219 1 1 23 5 313 <B 1 1 2
220 0 1 23 5 312 <A 13 2
+ 232 -12 1 23 5 <A 412 13 2
233 -13 1 23 <B 413 13 2
+ 236 -16 1 <B 33 413 13 2
237 -15 2 B> 33 413 13 2
238 -16 2 <A 1 3 3 413 13 2
239 -15 3 A> 1 3 3 413 13 2
240 -16 3 <B 1 3 3 413 13 2
241 -17 <A 1 1 3 3 413 13 2
242 -16 1 B> 1 1 3 3 413 13 2
+ 244 -14 1 2 2 B> 3 3 413 13 2
245 -15 1 2 2 <A 1 3 413 13 2
246 -14 1 2 3 A> 1 3 413 13 2
247 -15 1 2 3 <B 1 3 413 13 2
248 -16 1 2 <A 1 1 3 413 13 2
249 -15 1 3 A> 1 1 3 413 13 2
250 -16 1 3 <B 1 1 3 413 13 2
251 -17 1 <A 13 3 413 13 2
252 -18 <B 14 3 413 13 2
253 -19 <A 2 14 3 413 13 2
254 -18 1 B> 2 14 3 413 13 2
255 -19 1 <B 3 14 3 413 13 2
256 -18 2 B> 3 14 3 413 13 2
257 -19 2 <A 15 3 413 13 2
258 -18 3 A> 15 3 413 13 2
259 -19 3 <B 15 3 413 13 2
260 -20 <A 16 3 413 13 2
After 260 steps (201 lines): state = A.
Produced 24 nonzeros.
Tape index -20, scanned [-19 .. 4].
| State | Count | Execution count | First in step | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||
| A | 147 | 15 | 36 | 56 | 26 | 13 | 1 | 0 | 2 | 8 | 151 | 153 | 232 |
| B | 113 | 9 | 48 | 13 | 42 | 1 | 1 | 6 | 5 | 7 | 204 | ||