Comment: This TM produces >6.9x10^4931 nonzeros in >2.5x10^9863 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 5 |
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||||
A | 1RB | 1LB | 3RA | 4LA | 2LA | 4LB | 1 | right | B | 1 | left | B | 3 | right | A | 4 | left | A | 2 | left | A | 4 | left | B |
B | 2LA | 2RB | 3LB | 1LA | 5RA | 1RH | 2 | left | A | 2 | right | B | 3 | left | B | 1 | left | A | 5 | right | A | 1 | right | H |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-bck-macro machine. The same TM as 1-bck-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 2 3 -1 <B 1 2 4 -2 <A 2 1 2 5 -1 1 B> 2 1 2 6 -2 1 <B 3 1 2 7 -1 2 B> 3 1 2 8 -2 2 <A 1 1 2 9 -1 3 A> 1 1 2 10 -2 3 <B 1 1 2 11 -3 <A 13 2 12 -2 1 B> 13 2 + 15 1 1 23 B> 2 16 0 1 23 <B 3 + 19 -3 1 <B 34 20 -2 2 B> 34 21 -3 2 <A 1 33 22 -2 3 A> 1 33 23 -3 3 <B 1 33 24 -4 <A 1 1 33 25 -3 1 B> 1 1 33 + 27 -1 1 2 2 B> 33 28 -2 1 2 2 <A 1 3 3 29 -1 1 2 3 A> 1 3 3 30 -2 1 2 3 <B 1 3 3 31 -3 1 2 <A 1 1 3 3 32 -2 1 3 A> 1 1 3 3 33 -3 1 3 <B 1 1 3 3 34 -4 1 <A 13 3 3 35 -5 <B 14 3 3 36 -6 <A 2 14 3 3 37 -5 1 B> 2 14 3 3 38 -6 1 <B 3 14 3 3 39 -5 2 B> 3 14 3 3 40 -6 2 <A 15 3 3 41 -5 3 A> 15 3 3 42 -6 3 <B 15 3 3 43 -7 <A 16 3 3 44 -6 1 B> 16 3 3 + 50 0 1 26 B> 3 3 51 -1 1 26 <A 1 3 52 0 1 25 3 A> 1 3 53 -1 1 25 3 <B 1 3 54 -2 1 25 <A 1 1 3 55 -1 1 24 3 A> 1 1 3 56 -2 1 24 3 <B 1 1 3 57 -3 1 24 <A 13 3 58 -2 1 23 3 A> 13 3 59 -3 1 23 3 <B 13 3 60 -4 1 23 <A 14 3 61 -3 1 2 2 3 A> 14 3 62 -4 1 2 2 3 <B 14 3 63 -5 1 2 2 <A 15 3 64 -4 1 2 3 A> 15 3 65 -5 1 2 3 <B 15 3 66 -6 1 2 <A 16 3 67 -5 1 3 A> 16 3 68 -6 1 3 <B 16 3 69 -7 1 <A 17 3 70 -8 <B 18 3 71 -9 <A 2 18 3 72 -8 1 B> 2 18 3 73 -9 1 <B 3 18 3 74 -8 2 B> 3 18 3 75 -9 2 <A 19 3 76 -8 3 A> 19 3 77 -9 3 <B 19 3 78 -10 <A 110 3 79 -9 1 B> 110 3 + 89 1 1 210 B> 3 90 0 1 210 <A 1 91 1 1 29 3 A> 1 92 0 1 29 3 <B 1 93 -1 1 29 <A 1 1 94 0 1 28 3 A> 1 1 95 -1 1 28 3 <B 1 1 96 -2 1 28 <A 13 97 -1 1 27 3 A> 13 98 -2 1 27 3 <B 13 99 -3 1 27 <A 14 100 -2 1 26 3 A> 14 101 -3 1 26 3 <B 14 102 -4 1 26 <A 15 103 -3 1 25 3 A> 15 104 -4 1 25 3 <B 15 105 -5 1 25 <A 16 106 -4 1 24 3 A> 16 107 -5 1 24 3 <B 16 108 -6 1 24 <A 17 109 -5 1 23 3 A> 17 110 -6 1 23 3 <B 17 111 -7 1 23 <A 18 112 -6 1 2 2 3 A> 18 113 -7 1 2 2 3 <B 18 114 -8 1 2 2 <A 19 115 -7 1 2 3 A> 19 116 -8 1 2 3 <B 19 117 -9 1 2 <A 110 118 -8 1 3 A> 110 119 -9 1 3 <B 110 120 -10 1 <A 111 121 -11 <B 112 122 -12 <A 2 112 123 -11 1 B> 2 112 124 -12 1 <B 3 112 125 -11 2 B> 3 112 126 -12 2 <A 113 127 -11 3 A> 113 128 -12 3 <B 113 129 -13 <A 114 130 -12 1 B> 114 + 144 2 1 214 B> 145 1 1 214 <A 2 146 2 1 213 3 A> 2 147 3 1 213 3 3 A> 148 4 1 213 3 3 1 B> 149 3 1 213 3 3 1 <A 2 150 2 1 213 3 3 <B 1 2 151 1 1 213 3 <A 1 1 2 152 0 1 213 <A 4 1 1 2 153 1 1 212 3 A> 4 1 1 2 154 0 1 212 3 <A 2 1 1 2 155 -1 1 212 <A 4 2 1 1 2 156 0 1 211 3 A> 4 2 1 1 2 157 -1 1 211 3 <A 2 2 1 1 2 158 -2 1 211 <A 4 2 2 1 1 2 159 -1 1 210 3 A> 4 2 2 1 1 2 160 -2 1 210 3 <A 23 1 1 2 161 -3 1 210 <A 4 23 1 1 2 162 -2 1 29 3 A> 4 23 1 1 2 163 -3 1 29 3 <A 24 1 1 2 164 -4 1 29 <A 4 24 1 1 2 165 -3 1 28 3 A> 4 24 1 1 2 166 -4 1 28 3 <A 25 1 1 2 167 -5 1 28 <A 4 25 1 1 2 168 -4 1 27 3 A> 4 25 1 1 2 169 -5 1 27 3 <A 26 1 1 2 170 -6 1 27 <A 4 26 1 1 2 171 -5 1 26 3 A> 4 26 1 1 2 172 -6 1 26 3 <A 27 1 1 2 173 -7 1 26 <A 4 27 1 1 2 174 -6 1 25 3 A> 4 27 1 1 2 175 -7 1 25 3 <A 28 1 1 2 176 -8 1 25 <A 4 28 1 1 2 177 -7 1 24 3 A> 4 28 1 1 2 178 -8 1 24 3 <A 29 1 1 2 179 -9 1 24 <A 4 29 1 1 2 180 -8 1 23 3 A> 4 29 1 1 2 181 -9 1 23 3 <A 210 1 1 2 182 -10 1 23 <A 4 210 1 1 2 183 -9 1 2 2 3 A> 4 210 1 1 2 184 -10 1 2 2 3 <A 211 1 1 2 185 -11 1 2 2 <A 4 211 1 1 2 186 -10 1 2 3 A> 4 211 1 1 2 187 -11 1 2 3 <A 212 1 1 2 188 -12 1 2 <A 4 212 1 1 2 189 -11 1 3 A> 4 212 1 1 2 190 -12 1 3 <A 213 1 1 2 191 -13 1 <A 4 213 1 1 2 192 -14 <B 1 4 213 1 1 2 193 -15 <A 2 1 4 213 1 1 2 194 -14 1 B> 2 1 4 213 1 1 2 195 -15 1 <B 3 1 4 213 1 1 2 196 -14 2 B> 3 1 4 213 1 1 2 197 -15 2 <A 1 1 4 213 1 1 2 198 -14 3 A> 1 1 4 213 1 1 2 199 -15 3 <B 1 1 4 213 1 1 2 200 -16 <A 13 4 213 1 1 2 201 -15 1 B> 13 4 213 1 1 2 + 204 -12 1 23 B> 4 213 1 1 2 205 -11 1 23 5 A> 213 1 1 2 + 218 2 1 23 5 313 A> 1 1 2 219 1 1 23 5 313 <B 1 1 2 220 0 1 23 5 312 <A 13 2 + 232 -12 1 23 5 <A 412 13 2 233 -13 1 23 <B 413 13 2 + 236 -16 1 <B 33 413 13 2 237 -15 2 B> 33 413 13 2 238 -16 2 <A 1 3 3 413 13 2 239 -15 3 A> 1 3 3 413 13 2 240 -16 3 <B 1 3 3 413 13 2 241 -17 <A 1 1 3 3 413 13 2 242 -16 1 B> 1 1 3 3 413 13 2 + 244 -14 1 2 2 B> 3 3 413 13 2 245 -15 1 2 2 <A 1 3 413 13 2 246 -14 1 2 3 A> 1 3 413 13 2 247 -15 1 2 3 <B 1 3 413 13 2 248 -16 1 2 <A 1 1 3 413 13 2 249 -15 1 3 A> 1 1 3 413 13 2 250 -16 1 3 <B 1 1 3 413 13 2 251 -17 1 <A 13 3 413 13 2 252 -18 <B 14 3 413 13 2 253 -19 <A 2 14 3 413 13 2 254 -18 1 B> 2 14 3 413 13 2 255 -19 1 <B 3 14 3 413 13 2 256 -18 2 B> 3 14 3 413 13 2 257 -19 2 <A 15 3 413 13 2 258 -18 3 A> 15 3 413 13 2 259 -19 3 <B 15 3 413 13 2 260 -20 <A 16 3 413 13 2 After 260 steps (201 lines): state = A. Produced 24 nonzeros. Tape index -20, scanned [-19 .. 4].
State | Count | Execution count | First in step | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||
A | 147 | 15 | 36 | 56 | 26 | 13 | 1 | 0 | 2 | 8 | 151 | 153 | 232 |
B | 113 | 9 | 48 | 13 | 42 | 1 | 1 | 6 | 5 | 7 | 204 |