2-state 6-symbol #f (T.J. & S. Ligocki)

Comment: This TM produces >6.9x10^4931 nonzeros in >2.5x10^9863 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on
5
on 0 on 1 on 2 on 3 on 4 on 5
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 1LB 3RA 4LA 2LA 4LB 1 right B 1 left B 3 right A 4 left A 2 left A 4 left B
B 2LA 2RB 3LB 1LA 5RA 1RH 2 left A 2 right B 3 left B 1 left A 5 right A 1 right H
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     0  1 <A 2
     3    -1  <B 1 2
     4    -2  <A 2 1 2
     5    -1  1 B> 2 1 2
     6    -2  1 <B 3 1 2
     7    -1  2 B> 3 1 2
     8    -2  2 <A 1 1 2
     9    -1  3 A> 1 1 2
    10    -2  3 <B 1 1 2
    11    -3  <A 13 2
    12    -2  1 B> 13 2
+   15     1  1 23 B> 2
    16     0  1 23 <B 3
+   19    -3  1 <B 34
    20    -2  2 B> 34
    21    -3  2 <A 1 33
    22    -2  3 A> 1 33
    23    -3  3 <B 1 33
    24    -4  <A 1 1 33
    25    -3  1 B> 1 1 33
+   27    -1  1 2 2 B> 33
    28    -2  1 2 2 <A 1 3 3
    29    -1  1 2 3 A> 1 3 3
    30    -2  1 2 3 <B 1 3 3
    31    -3  1 2 <A 1 1 3 3
    32    -2  1 3 A> 1 1 3 3
    33    -3  1 3 <B 1 1 3 3
    34    -4  1 <A 13 3 3
    35    -5  <B 14 3 3
    36    -6  <A 2 14 3 3
    37    -5  1 B> 2 14 3 3
    38    -6  1 <B 3 14 3 3
    39    -5  2 B> 3 14 3 3
    40    -6  2 <A 15 3 3
    41    -5  3 A> 15 3 3
    42    -6  3 <B 15 3 3
    43    -7  <A 16 3 3
    44    -6  1 B> 16 3 3
+   50     0  1 26 B> 3 3
    51    -1  1 26 <A 1 3
    52     0  1 25 3 A> 1 3
    53    -1  1 25 3 <B 1 3
    54    -2  1 25 <A 1 1 3
    55    -1  1 24 3 A> 1 1 3
    56    -2  1 24 3 <B 1 1 3
    57    -3  1 24 <A 13 3
    58    -2  1 23 3 A> 13 3
    59    -3  1 23 3 <B 13 3
    60    -4  1 23 <A 14 3
    61    -3  1 2 2 3 A> 14 3
    62    -4  1 2 2 3 <B 14 3
    63    -5  1 2 2 <A 15 3
    64    -4  1 2 3 A> 15 3
    65    -5  1 2 3 <B 15 3
    66    -6  1 2 <A 16 3
    67    -5  1 3 A> 16 3
    68    -6  1 3 <B 16 3
    69    -7  1 <A 17 3
    70    -8  <B 18 3
    71    -9  <A 2 18 3
    72    -8  1 B> 2 18 3
    73    -9  1 <B 3 18 3
    74    -8  2 B> 3 18 3
    75    -9  2 <A 19 3
    76    -8  3 A> 19 3
    77    -9  3 <B 19 3
    78   -10  <A 110 3
    79    -9  1 B> 110 3
+   89     1  1 210 B> 3
    90     0  1 210 <A 1
    91     1  1 29 3 A> 1
    92     0  1 29 3 <B 1
    93    -1  1 29 <A 1 1
    94     0  1 28 3 A> 1 1
    95    -1  1 28 3 <B 1 1
    96    -2  1 28 <A 13
    97    -1  1 27 3 A> 13
    98    -2  1 27 3 <B 13
    99    -3  1 27 <A 14
   100    -2  1 26 3 A> 14
   101    -3  1 26 3 <B 14
   102    -4  1 26 <A 15
   103    -3  1 25 3 A> 15
   104    -4  1 25 3 <B 15
   105    -5  1 25 <A 16
   106    -4  1 24 3 A> 16
   107    -5  1 24 3 <B 16
   108    -6  1 24 <A 17
   109    -5  1 23 3 A> 17
   110    -6  1 23 3 <B 17
   111    -7  1 23 <A 18
   112    -6  1 2 2 3 A> 18
   113    -7  1 2 2 3 <B 18
   114    -8  1 2 2 <A 19
   115    -7  1 2 3 A> 19
   116    -8  1 2 3 <B 19
   117    -9  1 2 <A 110
   118    -8  1 3 A> 110
   119    -9  1 3 <B 110
   120   -10  1 <A 111
   121   -11  <B 112
   122   -12  <A 2 112
   123   -11  1 B> 2 112
   124   -12  1 <B 3 112
   125   -11  2 B> 3 112
   126   -12  2 <A 113
   127   -11  3 A> 113
   128   -12  3 <B 113
   129   -13  <A 114
   130   -12  1 B> 114
+  144     2  1 214 B>
   145     1  1 214 <A 2
   146     2  1 213 3 A> 2
   147     3  1 213 3 3 A>
   148     4  1 213 3 3 1 B>
   149     3  1 213 3 3 1 <A 2
   150     2  1 213 3 3 <B 1 2
   151     1  1 213 3 <A 1 1 2
   152     0  1 213 <A 4 1 1 2
   153     1  1 212 3 A> 4 1 1 2
   154     0  1 212 3 <A 2 1 1 2
   155    -1  1 212 <A 4 2 1 1 2
   156     0  1 211 3 A> 4 2 1 1 2
   157    -1  1 211 3 <A 2 2 1 1 2
   158    -2  1 211 <A 4 2 2 1 1 2
   159    -1  1 210 3 A> 4 2 2 1 1 2
   160    -2  1 210 3 <A 23 1 1 2
   161    -3  1 210 <A 4 23 1 1 2
   162    -2  1 29 3 A> 4 23 1 1 2
   163    -3  1 29 3 <A 24 1 1 2
   164    -4  1 29 <A 4 24 1 1 2
   165    -3  1 28 3 A> 4 24 1 1 2
   166    -4  1 28 3 <A 25 1 1 2
   167    -5  1 28 <A 4 25 1 1 2
   168    -4  1 27 3 A> 4 25 1 1 2
   169    -5  1 27 3 <A 26 1 1 2
   170    -6  1 27 <A 4 26 1 1 2
   171    -5  1 26 3 A> 4 26 1 1 2
   172    -6  1 26 3 <A 27 1 1 2
   173    -7  1 26 <A 4 27 1 1 2
   174    -6  1 25 3 A> 4 27 1 1 2
   175    -7  1 25 3 <A 28 1 1 2
   176    -8  1 25 <A 4 28 1 1 2
   177    -7  1 24 3 A> 4 28 1 1 2
   178    -8  1 24 3 <A 29 1 1 2
   179    -9  1 24 <A 4 29 1 1 2
   180    -8  1 23 3 A> 4 29 1 1 2
   181    -9  1 23 3 <A 210 1 1 2
   182   -10  1 23 <A 4 210 1 1 2
   183    -9  1 2 2 3 A> 4 210 1 1 2
   184   -10  1 2 2 3 <A 211 1 1 2
   185   -11  1 2 2 <A 4 211 1 1 2
   186   -10  1 2 3 A> 4 211 1 1 2
   187   -11  1 2 3 <A 212 1 1 2
   188   -12  1 2 <A 4 212 1 1 2
   189   -11  1 3 A> 4 212 1 1 2
   190   -12  1 3 <A 213 1 1 2
   191   -13  1 <A 4 213 1 1 2
   192   -14  <B 1 4 213 1 1 2
   193   -15  <A 2 1 4 213 1 1 2
   194   -14  1 B> 2 1 4 213 1 1 2
   195   -15  1 <B 3 1 4 213 1 1 2
   196   -14  2 B> 3 1 4 213 1 1 2
   197   -15  2 <A 1 1 4 213 1 1 2
   198   -14  3 A> 1 1 4 213 1 1 2
   199   -15  3 <B 1 1 4 213 1 1 2
   200   -16  <A 13 4 213 1 1 2
   201   -15  1 B> 13 4 213 1 1 2
+  204   -12  1 23 B> 4 213 1 1 2
   205   -11  1 23 5 A> 213 1 1 2
+  218     2  1 23 5 313 A> 1 1 2
   219     1  1 23 5 313 <B 1 1 2
   220     0  1 23 5 312 <A 13 2
+  232   -12  1 23 5 <A 412 13 2
   233   -13  1 23 <B 413 13 2
+  236   -16  1 <B 33 413 13 2
   237   -15  2 B> 33 413 13 2
   238   -16  2 <A 1 3 3 413 13 2
   239   -15  3 A> 1 3 3 413 13 2
   240   -16  3 <B 1 3 3 413 13 2
   241   -17  <A 1 1 3 3 413 13 2
   242   -16  1 B> 1 1 3 3 413 13 2
+  244   -14  1 2 2 B> 3 3 413 13 2
   245   -15  1 2 2 <A 1 3 413 13 2
   246   -14  1 2 3 A> 1 3 413 13 2
   247   -15  1 2 3 <B 1 3 413 13 2
   248   -16  1 2 <A 1 1 3 413 13 2
   249   -15  1 3 A> 1 1 3 413 13 2
   250   -16  1 3 <B 1 1 3 413 13 2
   251   -17  1 <A 13 3 413 13 2
   252   -18  <B 14 3 413 13 2
   253   -19  <A 2 14 3 413 13 2
   254   -18  1 B> 2 14 3 413 13 2
   255   -19  1 <B 3 14 3 413 13 2
   256   -18  2 B> 3 14 3 413 13 2
   257   -19  2 <A 15 3 413 13 2
   258   -18  3 A> 15 3 413 13 2
   259   -19  3 <B 15 3 413 13 2
   260   -20  <A 16 3 413 13 2

After 260 steps (201 lines): state = A.
Produced     24 nonzeros.
Tape index -20, scanned [-19 .. 4].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 5 on 0 on 1 on 2 on 3 on 4 on 5
A 147 15 36 56 26 13 1 0 2 8 151 153 232
B 113 9 48 13 42 1   1 6 5 7 204  
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:13:22 CEST 2010