Comment: This TM produces >1.7x10^352 nonzeros in >1.9x10^704 steps. Comment: This is a current 2x5 champion Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | 1RB | 2LA | 1RA | 2LB | 2LA | 1 | right | B | 2 | left | A | 1 | right | A | 2 | left | B | 2 | left | A |
B | 0LA | 2RB | 3RB | 4RA | 1RH | 0 | left | A | 2 | right | B | 3 | right | B | 4 | right | A | 1 | right | H |
Simulation is done just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . 0 1 1 B . . 10 2 0 A . . 10 3 -1 A . .020 4 0 B . .120 5 1 B . .130 6 0 A . .130 7 -1 B . .120 8 0 B . .220 9 1 B . .230 10 0 A . .230 11 -1 B . .220 12 0 B . .320 13 1 B . .330 14 0 A . .330 15 -1 B . .320 16 0 A . .420 17 1 A . .410 18 2 B . .4110 19 1 A . .4110 20 0 A . .4120 21 -1 A . .4220 22 -2 A . 02220 23 -1 B . 12220 24 0 B . 13220 25 1 B . 13320 26 2 B . 13330 27 1 A . 13330 28 0 B . 13320 29 1 A . 13420 30 2 A . 13410 31 3 B . 134110 32 2 A . 134110 33 1 A . 134120 34 0 A . 134220 35 -1 A . 132220 36 -2 B . 122220 37 -1 B . 222220 38 0 B . 232220 39 1 B . 233220 40 2 B . 233320 41 3 B . 233330 42 2 A . 233330 43 1 B . 233320 44 2 A . 233420 45 3 A . 233410 46 4 B . 2334110 47 3 A . 2334110 48 2 A . 2334120 49 1 A . 2334220 50 0 A . 2332220 51 -1 B . 2322220 52 0 A . 2422220 53 1 A . 2412220 54 2 A . 2411220 55 3 A . 2411120 56 4 A . 2411110 57 5 B . 24111110 58 4 A . 24111110 59 3 A . 24111120 60 2 A . 24111220 61 1 A . 24112220 62 0 A . 24122220 63 -1 A . 24222220 64 -2 A . 22222220 65 -1 A . 12222220 66 0 A . 11222220 67 1 A . 11122220 68 2 A . 11112220 69 3 A . 11111220 70 4 A . 11111120 71 5 A . 11111110 72 6 B . 111111110 73 5 A . 111111110 74 4 A . 111111120 75 3 A . 111111220 76 2 A . 111112220 77 1 A . 111122220 78 0 A . 111222220 79 -1 A . 112222220 80 -2 A . 122222220 81 -3 A .0222222220 82 -2 B .1222222220 83 -1 B .1322222220 84 0 B .1332222220 85 1 B .1333222220 86 2 B .1333322220 87 3 B .1333332220 88 4 B .1333333220 89 5 B .1333333320 90 6 B .1333333330 91 5 A .1333333330 92 4 B .1333333320 93 5 A .1333333420 94 6 A .1333333410 95 7 B .13333334110 96 6 A .13333334110 97 5 A .13333334120 98 4 A .13333334220 99 3 A .13333332220 100 2 B .13333322220 101 3 A .13333422220 102 4 A .13333412220 103 5 A .13333411220 104 6 A .13333411120 105 7 A .13333411110 106 8 B .133334111110 107 7 A .133334111110 108 6 A .133334111120 109 5 A .133334111220 110 4 A .133334112220 111 3 A .133334122220 112 2 A .133334222220 113 1 A .133332222220 114 0 B .133322222220 115 1 A .133422222220 116 2 A .133412222220 117 3 A .133411222220 118 4 A .133411122220 119 5 A .133411112220 120 6 A .133411111220 121 7 A .133411111120 122 8 A .133411111110 123 9 B .1334111111110 124 8 A .1334111111110 125 7 A .1334111111120 126 6 A .1334111111220 127 5 A .1334111112220 128 4 A .1334111122220 129 3 A .1334111222220 130 2 A .1334112222220 131 1 A .1334122222220 132 0 A .1334222222220 133 -1 A .1332222222220 134 -2 B .1322222222220 135 -1 A .1422222222220 136 0 A .1412222222220 137 1 A .1411222222220 138 2 A .1411122222220 139 3 A .1411112222220 140 4 A .1411111222220 141 5 A .1411111122220 142 6 A .1411111112220 143 7 A .1411111111220 144 8 A .1411111111120 145 9 A .1411111111110 146 10 B .14111111111110 147 9 A .14111111111110 148 8 A .14111111111120 149 7 A .14111111111220 150 6 A .14111111112220 151 5 A .14111111122220 152 4 A .14111111222220 153 3 A .14111112222220 154 2 A .14111122222220 155 1 A .14111222222220 156 0 A .14112222222220 157 -1 A .14122222222220 158 -2 A .14222222222220 159 -3 A .12222222222220 160 -4 A 022222222222220 161 -3 B 122222222222220 162 -2 B 132222222222220 163 -1 B 133222222222220 164 0 B 133322222222220 165 1 B 133332222222220 166 2 B 133333222222220 167 3 B 133333322222220 168 4 B 133333332222220 169 5 B 133333333222220 170 6 B 133333333322220 171 7 B 133333333332220 172 8 B 133333333333220 173 9 B 133333333333320 174 10 B 133333333333330 175 9 A 133333333333330 176 8 B 133333333333320 177 9 A 133333333333420 178 10 A 133333333333410 179 11 B 1333333333334110 180 10 A 1333333333334110 181 9 A 1333333333334120 182 8 A 1333333333334220 183 7 A 1333333333332220 184 6 B 1333333333322220 185 7 A 1333333333422220 186 8 A 1333333333412220 187 9 A 1333333333411220 188 10 A 1333333333411120 189 11 A 1333333333411110 190 12 B 13333333334111110 191 11 A 13333333334111110 192 10 A 13333333334111120 193 9 A 13333333334111220 194 8 A 13333333334112220 195 7 A 13333333334122220 196 6 A 13333333334222220 197 5 A 13333333332222220 198 4 B 13333333322222220 199 5 A 13333333422222220 200 6 A 13333333412222220 After 200 steps (201 lines): state = A. Produced 16 nonzeros. Tape index 6, scanned [-4 .. 12].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 136 | 16 | 54 | 42 | 14 | 10 | 0 | 2 | 16 | 6 | 21 |
B | 64 | 19 | 2 | 32 | 11 | 1 | 7 | 4 | 15 |