Comment: This TM produces >1.7x10^352 nonzeros in >1.9x10^704 steps. Comment: This is a current 2x5 champion Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | 1RB | 2LA | 1RA | 2LB | 2LA | 1 | right | B | 2 | left | A | 1 | right | A | 2 | left | B | 2 | left | A |
| B | 0LA | 2RB | 3RB | 4RA | 1RH | 0 | left | A | 2 | right | B | 3 | right | B | 4 | right | A | 1 | right | H |
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Step Tpos St Tape contents
0 0 A . . 0
1 1 B . . 10
2 0 A . . 10
3 -1 A . .020
4 0 B . .120
5 1 B . .130
6 0 A . .130
7 -1 B . .120
8 0 B . .220
9 1 B . .230
10 0 A . .230
11 -1 B . .220
12 0 B . .320
13 1 B . .330
14 0 A . .330
15 -1 B . .320
16 0 A . .420
17 1 A . .410
18 2 B . .4110
19 1 A . .4110
20 0 A . .4120
21 -1 A . .4220
22 -2 A . 02220
23 -1 B . 12220
24 0 B . 13220
25 1 B . 13320
26 2 B . 13330
27 1 A . 13330
28 0 B . 13320
29 1 A . 13420
30 2 A . 13410
31 3 B . 134110
32 2 A . 134110
33 1 A . 134120
34 0 A . 134220
35 -1 A . 132220
36 -2 B . 122220
37 -1 B . 222220
38 0 B . 232220
39 1 B . 233220
40 2 B . 233320
41 3 B . 233330
42 2 A . 233330
43 1 B . 233320
44 2 A . 233420
45 3 A . 233410
46 4 B . 2334110
47 3 A . 2334110
48 2 A . 2334120
49 1 A . 2334220
50 0 A . 2332220
51 -1 B . 2322220
52 0 A . 2422220
53 1 A . 2412220
54 2 A . 2411220
55 3 A . 2411120
56 4 A . 2411110
57 5 B . 24111110
58 4 A . 24111110
59 3 A . 24111120
60 2 A . 24111220
61 1 A . 24112220
62 0 A . 24122220
63 -1 A . 24222220
64 -2 A . 22222220
65 -1 A . 12222220
66 0 A . 11222220
67 1 A . 11122220
68 2 A . 11112220
69 3 A . 11111220
70 4 A . 11111120
71 5 A . 11111110
72 6 B . 111111110
73 5 A . 111111110
74 4 A . 111111120
75 3 A . 111111220
76 2 A . 111112220
77 1 A . 111122220
78 0 A . 111222220
79 -1 A . 112222220
80 -2 A . 122222220
81 -3 A .0222222220
82 -2 B .1222222220
83 -1 B .1322222220
84 0 B .1332222220
85 1 B .1333222220
86 2 B .1333322220
87 3 B .1333332220
88 4 B .1333333220
89 5 B .1333333320
90 6 B .1333333330
91 5 A .1333333330
92 4 B .1333333320
93 5 A .1333333420
94 6 A .1333333410
95 7 B .13333334110
96 6 A .13333334110
97 5 A .13333334120
98 4 A .13333334220
99 3 A .13333332220
100 2 B .13333322220
101 3 A .13333422220
102 4 A .13333412220
103 5 A .13333411220
104 6 A .13333411120
105 7 A .13333411110
106 8 B .133334111110
107 7 A .133334111110
108 6 A .133334111120
109 5 A .133334111220
110 4 A .133334112220
111 3 A .133334122220
112 2 A .133334222220
113 1 A .133332222220
114 0 B .133322222220
115 1 A .133422222220
116 2 A .133412222220
117 3 A .133411222220
118 4 A .133411122220
119 5 A .133411112220
120 6 A .133411111220
121 7 A .133411111120
122 8 A .133411111110
123 9 B .1334111111110
124 8 A .1334111111110
125 7 A .1334111111120
126 6 A .1334111111220
127 5 A .1334111112220
128 4 A .1334111122220
129 3 A .1334111222220
130 2 A .1334112222220
131 1 A .1334122222220
132 0 A .1334222222220
133 -1 A .1332222222220
134 -2 B .1322222222220
135 -1 A .1422222222220
136 0 A .1412222222220
137 1 A .1411222222220
138 2 A .1411122222220
139 3 A .1411112222220
140 4 A .1411111222220
141 5 A .1411111122220
142 6 A .1411111112220
143 7 A .1411111111220
144 8 A .1411111111120
145 9 A .1411111111110
146 10 B .14111111111110
147 9 A .14111111111110
148 8 A .14111111111120
149 7 A .14111111111220
150 6 A .14111111112220
151 5 A .14111111122220
152 4 A .14111111222220
153 3 A .14111112222220
154 2 A .14111122222220
155 1 A .14111222222220
156 0 A .14112222222220
157 -1 A .14122222222220
158 -2 A .14222222222220
159 -3 A .12222222222220
160 -4 A 022222222222220
161 -3 B 122222222222220
162 -2 B 132222222222220
163 -1 B 133222222222220
164 0 B 133322222222220
165 1 B 133332222222220
166 2 B 133333222222220
167 3 B 133333322222220
168 4 B 133333332222220
169 5 B 133333333222220
170 6 B 133333333322220
171 7 B 133333333332220
172 8 B 133333333333220
173 9 B 133333333333320
174 10 B 133333333333330
175 9 A 133333333333330
176 8 B 133333333333320
177 9 A 133333333333420
178 10 A 133333333333410
179 11 B 1333333333334110
180 10 A 1333333333334110
181 9 A 1333333333334120
182 8 A 1333333333334220
183 7 A 1333333333332220
184 6 B 1333333333322220
185 7 A 1333333333422220
186 8 A 1333333333412220
187 9 A 1333333333411220
188 10 A 1333333333411120
189 11 A 1333333333411110
190 12 B 13333333334111110
191 11 A 13333333334111110
192 10 A 13333333334111120
193 9 A 13333333334111220
194 8 A 13333333334112220
195 7 A 13333333334122220
196 6 A 13333333334222220
197 5 A 13333333332222220
198 4 B 13333333322222220
199 5 A 13333333422222220
200 6 A 13333333412222220
After 200 steps (201 lines): state = A.
Produced 16 nonzeros.
Tape index 6, scanned [-4 .. 12].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 136 | 16 | 54 | 42 | 14 | 10 | 0 | 2 | 16 | 6 | 21 |
| B | 64 | 19 | 2 | 32 | 11 | 1 | 7 | 4 | 15 | ||