2-state 5-symbol #n from T.J. & S. Ligocki

Comment: This TM produces >1.7x10^352 nonzeros in >1.9x10^704 steps.
Comment: This is a current 2x5 champion

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 2LA 1RA 2LB 2LA 1 right B 2 left A 1 right A 2 left B 2 left A
B 0LA 2RB 3RB 4RA 1RH 0 left A 2 right B 3 right B 4 right A 1 right H
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . 0
     1    1 B . . 10
     2    0 A . . 10
     3   -1 A . .020
     4    0 B . .120
     5    1 B . .130
     6    0 A . .130
     7   -1 B . .120
     8    0 B . .220
     9    1 B . .230
    10    0 A . .230
    11   -1 B . .220
    12    0 B . .320
    13    1 B . .330
    14    0 A . .330
    15   -1 B . .320
    16    0 A . .420
    17    1 A . .410
    18    2 B . .4110
    19    1 A . .4110
    20    0 A . .4120
    21   -1 A . .4220
    22   -2 A . 02220
    23   -1 B . 12220
    24    0 B . 13220
    25    1 B . 13320
    26    2 B . 13330
    27    1 A . 13330
    28    0 B . 13320
    29    1 A . 13420
    30    2 A . 13410
    31    3 B . 134110
    32    2 A . 134110
    33    1 A . 134120
    34    0 A . 134220
    35   -1 A . 132220
    36   -2 B . 122220
    37   -1 B . 222220
    38    0 B . 232220
    39    1 B . 233220
    40    2 B . 233320
    41    3 B . 233330
    42    2 A . 233330
    43    1 B . 233320
    44    2 A . 233420
    45    3 A . 233410
    46    4 B . 2334110
    47    3 A . 2334110
    48    2 A . 2334120
    49    1 A . 2334220
    50    0 A . 2332220
    51   -1 B . 2322220
    52    0 A . 2422220
    53    1 A . 2412220
    54    2 A . 2411220
    55    3 A . 2411120
    56    4 A . 2411110
    57    5 B . 24111110
    58    4 A . 24111110
    59    3 A . 24111120
    60    2 A . 24111220
    61    1 A . 24112220
    62    0 A . 24122220
    63   -1 A . 24222220
    64   -2 A . 22222220
    65   -1 A . 12222220
    66    0 A . 11222220
    67    1 A . 11122220
    68    2 A . 11112220
    69    3 A . 11111220
    70    4 A . 11111120
    71    5 A . 11111110
    72    6 B . 111111110
    73    5 A . 111111110
    74    4 A . 111111120
    75    3 A . 111111220
    76    2 A . 111112220
    77    1 A . 111122220
    78    0 A . 111222220
    79   -1 A . 112222220
    80   -2 A . 122222220
    81   -3 A .0222222220
    82   -2 B .1222222220
    83   -1 B .1322222220
    84    0 B .1332222220
    85    1 B .1333222220
    86    2 B .1333322220
    87    3 B .1333332220
    88    4 B .1333333220
    89    5 B .1333333320
    90    6 B .1333333330
    91    5 A .1333333330
    92    4 B .1333333320
    93    5 A .1333333420
    94    6 A .1333333410
    95    7 B .13333334110
    96    6 A .13333334110
    97    5 A .13333334120
    98    4 A .13333334220
    99    3 A .13333332220
   100    2 B .13333322220
   101    3 A .13333422220
   102    4 A .13333412220
   103    5 A .13333411220
   104    6 A .13333411120
   105    7 A .13333411110
   106    8 B .133334111110
   107    7 A .133334111110
   108    6 A .133334111120
   109    5 A .133334111220
   110    4 A .133334112220
   111    3 A .133334122220
   112    2 A .133334222220
   113    1 A .133332222220
   114    0 B .133322222220
   115    1 A .133422222220
   116    2 A .133412222220
   117    3 A .133411222220
   118    4 A .133411122220
   119    5 A .133411112220
   120    6 A .133411111220
   121    7 A .133411111120
   122    8 A .133411111110
   123    9 B .1334111111110
   124    8 A .1334111111110
   125    7 A .1334111111120
   126    6 A .1334111111220
   127    5 A .1334111112220
   128    4 A .1334111122220
   129    3 A .1334111222220
   130    2 A .1334112222220
   131    1 A .1334122222220
   132    0 A .1334222222220
   133   -1 A .1332222222220
   134   -2 B .1322222222220
   135   -1 A .1422222222220
   136    0 A .1412222222220
   137    1 A .1411222222220
   138    2 A .1411122222220
   139    3 A .1411112222220
   140    4 A .1411111222220
   141    5 A .1411111122220
   142    6 A .1411111112220
   143    7 A .1411111111220
   144    8 A .1411111111120
   145    9 A .1411111111110
   146   10 B .14111111111110
   147    9 A .14111111111110
   148    8 A .14111111111120
   149    7 A .14111111111220
   150    6 A .14111111112220
   151    5 A .14111111122220
   152    4 A .14111111222220
   153    3 A .14111112222220
   154    2 A .14111122222220
   155    1 A .14111222222220
   156    0 A .14112222222220
   157   -1 A .14122222222220
   158   -2 A .14222222222220
   159   -3 A .12222222222220
   160   -4 A 022222222222220
   161   -3 B 122222222222220
   162   -2 B 132222222222220
   163   -1 B 133222222222220
   164    0 B 133322222222220
   165    1 B 133332222222220
   166    2 B 133333222222220
   167    3 B 133333322222220
   168    4 B 133333332222220
   169    5 B 133333333222220
   170    6 B 133333333322220
   171    7 B 133333333332220
   172    8 B 133333333333220
   173    9 B 133333333333320
   174   10 B 133333333333330
   175    9 A 133333333333330
   176    8 B 133333333333320
   177    9 A 133333333333420
   178   10 A 133333333333410
   179   11 B 1333333333334110
   180   10 A 1333333333334110
   181    9 A 1333333333334120
   182    8 A 1333333333334220
   183    7 A 1333333333332220
   184    6 B 1333333333322220
   185    7 A 1333333333422220
   186    8 A 1333333333412220
   187    9 A 1333333333411220
   188   10 A 1333333333411120
   189   11 A 1333333333411110
   190   12 B 13333333334111110
   191   11 A 13333333334111110
   192   10 A 13333333334111120
   193    9 A 13333333334111220
   194    8 A 13333333334112220
   195    7 A 13333333334122220
   196    6 A 13333333334222220
   197    5 A 13333333332222220
   198    4 B 13333333322222220
   199    5 A 13333333422222220
   200    6 A 13333333412222220

After 200 steps (201 lines): state = A.
Produced     16 nonzeros.
Tape index 6, scanned [-4 .. 12].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 136 16 54 42 14 10 0 2 16 6 21
B 64 19 2 32 11   1 7 4 15  
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:13:09 CEST 2010