Comment: This TM produces >1.7x10^352 nonzeros in >1.9x10^704 steps. Comment: This is a current 2x5 champion Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | 1RB | 2LA | 1RA | 2LB | 2LA | 1 | right | B | 2 | left | A | 1 | right | A | 2 | left | B | 2 | left | A |
B | 0LA | 2RB | 3RB | 4RA | 1RH | 0 | left | A | 2 | right | B | 3 | right | B | 4 | right | A | 1 | right | H |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 3 -1 <A 2 4 0 1 B> 2 5 1 1 3 B> 6 0 1 3 <A 7 -1 1 <B 2 8 0 2 B> 2 9 1 2 3 B> 10 0 2 3 <A 11 -1 2 <B 2 12 0 3 B> 2 13 1 3 3 B> 14 0 3 3 <A 15 -1 3 <B 2 16 0 4 A> 2 17 1 4 1 A> 18 2 4 1 1 B> 19 1 4 1 1 <A + 21 -1 4 <A 2 2 22 -2 <A 23 23 -1 1 B> 23 + 26 2 1 33 B> 27 1 1 33 <A 28 0 1 3 3 <B 2 29 1 1 3 4 A> 2 30 2 1 3 4 1 A> 31 3 1 3 4 1 1 B> 32 2 1 3 4 1 1 <A + 34 0 1 3 4 <A 2 2 35 -1 1 3 <A 23 36 -2 1 <B 24 37 -1 2 B> 24 + 41 3 2 34 B> 42 2 2 34 <A 43 1 2 33 <B 2 44 2 2 3 3 4 A> 2 45 3 2 3 3 4 1 A> 46 4 2 3 3 4 1 1 B> 47 3 2 3 3 4 1 1 <A + 49 1 2 3 3 4 <A 2 2 50 0 2 3 3 <A 23 51 -1 2 3 <B 24 52 0 2 4 A> 24 + 56 4 2 4 14 A> 57 5 2 4 15 B> 58 4 2 4 15 <A + 63 -1 2 4 <A 25 64 -2 2 <A 26 65 -1 1 A> 26 + 71 5 17 A> 72 6 18 B> 73 5 18 <A + 81 -3 <A 28 82 -2 1 B> 28 + 90 6 1 38 B> 91 5 1 38 <A 92 4 1 37 <B 2 93 5 1 36 4 A> 2 94 6 1 36 4 1 A> 95 7 1 36 4 1 1 B> 96 6 1 36 4 1 1 <A + 98 4 1 36 4 <A 2 2 99 3 1 36 <A 23 100 2 1 35 <B 24 101 3 1 34 4 A> 24 + 105 7 1 34 4 14 A> 106 8 1 34 4 15 B> 107 7 1 34 4 15 <A + 112 2 1 34 4 <A 25 113 1 1 34 <A 26 114 0 1 33 <B 27 115 1 1 3 3 4 A> 27 + 122 8 1 3 3 4 17 A> 123 9 1 3 3 4 18 B> 124 8 1 3 3 4 18 <A + 132 0 1 3 3 4 <A 28 133 -1 1 3 3 <A 29 134 -2 1 3 <B 210 135 -1 1 4 A> 210 + 145 9 1 4 110 A> 146 10 1 4 111 B> 147 9 1 4 111 <A + 158 -2 1 4 <A 211 159 -3 1 <A 212 160 -4 <A 213 161 -3 1 B> 213 + 174 10 1 313 B> 175 9 1 313 <A 176 8 1 312 <B 2 177 9 1 311 4 A> 2 178 10 1 311 4 1 A> 179 11 1 311 4 1 1 B> 180 10 1 311 4 1 1 <A + 182 8 1 311 4 <A 2 2 183 7 1 311 <A 23 184 6 1 310 <B 24 185 7 1 39 4 A> 24 + 189 11 1 39 4 14 A> 190 12 1 39 4 15 B> 191 11 1 39 4 15 <A + 196 6 1 39 4 <A 25 197 5 1 39 <A 26 198 4 1 38 <B 27 199 5 1 37 4 A> 27 + 206 12 1 37 4 17 A> 207 13 1 37 4 18 B> 208 12 1 37 4 18 <A + 216 4 1 37 4 <A 28 217 3 1 37 <A 29 218 2 1 36 <B 210 219 3 1 35 4 A> 210 + 229 13 1 35 4 110 A> 230 14 1 35 4 111 B> 231 13 1 35 4 111 <A + 242 2 1 35 4 <A 211 243 1 1 35 <A 212 244 0 1 34 <B 213 245 1 1 33 4 A> 213 + 258 14 1 33 4 113 A> 259 15 1 33 4 114 B> 260 14 1 33 4 114 <A + 274 0 1 33 4 <A 214 275 -1 1 33 <A 215 276 -2 1 3 3 <B 216 277 -1 1 3 4 A> 216 + 293 15 1 3 4 116 A> 294 16 1 3 4 117 B> 295 15 1 3 4 117 <A + 312 -2 1 3 4 <A 217 313 -3 1 3 <A 218 314 -4 1 <B 219 315 -3 2 B> 219 + 334 16 2 319 B> 335 15 2 319 <A 336 14 2 318 <B 2 337 15 2 317 4 A> 2 338 16 2 317 4 1 A> 339 17 2 317 4 1 1 B> 340 16 2 317 4 1 1 <A + 342 14 2 317 4 <A 2 2 343 13 2 317 <A 23 344 12 2 316 <B 24 345 13 2 315 4 A> 24 + 349 17 2 315 4 14 A> 350 18 2 315 4 15 B> 351 17 2 315 4 15 <A + 356 12 2 315 4 <A 25 357 11 2 315 <A 26 358 10 2 314 <B 27 359 11 2 313 4 A> 27 + 366 18 2 313 4 17 A> 367 19 2 313 4 18 B> 368 18 2 313 4 18 <A + 376 10 2 313 4 <A 28 377 9 2 313 <A 29 378 8 2 312 <B 210 379 9 2 311 4 A> 210 + 389 19 2 311 4 110 A> 390 20 2 311 4 111 B> 391 19 2 311 4 111 <A + 402 8 2 311 4 <A 211 403 7 2 311 <A 212 404 6 2 310 <B 213 405 7 2 39 4 A> 213 + 418 20 2 39 4 113 A> 419 21 2 39 4 114 B> 420 20 2 39 4 114 <A + 434 6 2 39 4 <A 214 435 5 2 39 <A 215 436 4 2 38 <B 216 437 5 2 37 4 A> 216 + 453 21 2 37 4 116 A> 454 22 2 37 4 117 B> 455 21 2 37 4 117 <A + 472 4 2 37 4 <A 217 473 3 2 37 <A 218 474 2 2 36 <B 219 475 3 2 35 4 A> 219 + 494 22 2 35 4 119 A> 495 23 2 35 4 120 B> 496 22 2 35 4 120 <A + 516 2 2 35 4 <A 220 517 1 2 35 <A 221 518 0 2 34 <B 222 519 1 2 33 4 A> 222 + 541 23 2 33 4 122 A> 542 24 2 33 4 123 B> 543 23 2 33 4 123 <A + 566 0 2 33 4 <A 223 567 -1 2 33 <A 224 568 -2 2 3 3 <B 225 569 -1 2 3 4 A> 225 + 594 24 2 3 4 125 A> 595 25 2 3 4 126 B> 596 24 2 3 4 126 <A + 622 -2 2 3 4 <A 226 623 -3 2 3 <A 227 624 -4 2 <B 228 625 -3 3 B> 228 After 625 steps (201 lines): state = B. Produced 29 nonzeros. Tape index -3, scanned [-4 .. 25].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 514 | 29 | 230 | 204 | 28 | 23 | 0 | 2 | 16 | 6 | 21 |
B | 111 | 33 | 3 | 52 | 23 | 1 | 7 | 4 | 15 |