2-state 5-symbol #n from T.J. & S. Ligocki

Comment: This TM produces >1.7x10^352 nonzeros in >1.9x10^704 steps.
Comment: This is a current 2x5 champion

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 2LA 1RA 2LB 2LA 1 right B 2 left A 1 right A 2 left B 2 left A
B 0LA 2RB 3RB 4RA 1RH 0 left A 2 right B 3 right B 4 right A 1 right H
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     0  1 <A
     3    -1  <A 2
     4     0  1 B> 2
     5     1  1 3 B>
     6     0  1 3 <A
     7    -1  1 <B 2
     8     0  2 B> 2
     9     1  2 3 B>
    10     0  2 3 <A
    11    -1  2 <B 2
    12     0  3 B> 2
    13     1  3 3 B>
    14     0  3 3 <A
    15    -1  3 <B 2
    16     0  4 A> 2
    17     1  4 1 A>
    18     2  4 1 1 B>
    19     1  4 1 1 <A
+   21    -1  4 <A 2 2
    22    -2  <A 23
    23    -1  1 B> 23
+   26     2  1 33 B>
    27     1  1 33 <A
    28     0  1 3 3 <B 2
    29     1  1 3 4 A> 2
    30     2  1 3 4 1 A>
    31     3  1 3 4 1 1 B>
    32     2  1 3 4 1 1 <A
+   34     0  1 3 4 <A 2 2
    35    -1  1 3 <A 23
    36    -2  1 <B 24
    37    -1  2 B> 24
+   41     3  2 34 B>
    42     2  2 34 <A
    43     1  2 33 <B 2
    44     2  2 3 3 4 A> 2
    45     3  2 3 3 4 1 A>
    46     4  2 3 3 4 1 1 B>
    47     3  2 3 3 4 1 1 <A
+   49     1  2 3 3 4 <A 2 2
    50     0  2 3 3 <A 23
    51    -1  2 3 <B 24
    52     0  2 4 A> 24
+   56     4  2 4 14 A>
    57     5  2 4 15 B>
    58     4  2 4 15 <A
+   63    -1  2 4 <A 25
    64    -2  2 <A 26
    65    -1  1 A> 26
+   71     5  17 A>
    72     6  18 B>
    73     5  18 <A
+   81    -3  <A 28
    82    -2  1 B> 28
+   90     6  1 38 B>
    91     5  1 38 <A
    92     4  1 37 <B 2
    93     5  1 36 4 A> 2
    94     6  1 36 4 1 A>
    95     7  1 36 4 1 1 B>
    96     6  1 36 4 1 1 <A
+   98     4  1 36 4 <A 2 2
    99     3  1 36 <A 23
   100     2  1 35 <B 24
   101     3  1 34 4 A> 24
+  105     7  1 34 4 14 A>
   106     8  1 34 4 15 B>
   107     7  1 34 4 15 <A
+  112     2  1 34 4 <A 25
   113     1  1 34 <A 26
   114     0  1 33 <B 27
   115     1  1 3 3 4 A> 27
+  122     8  1 3 3 4 17 A>
   123     9  1 3 3 4 18 B>
   124     8  1 3 3 4 18 <A
+  132     0  1 3 3 4 <A 28
   133    -1  1 3 3 <A 29
   134    -2  1 3 <B 210
   135    -1  1 4 A> 210
+  145     9  1 4 110 A>
   146    10  1 4 111 B>
   147     9  1 4 111 <A
+  158    -2  1 4 <A 211
   159    -3  1 <A 212
   160    -4  <A 213
   161    -3  1 B> 213
+  174    10  1 313 B>
   175     9  1 313 <A
   176     8  1 312 <B 2
   177     9  1 311 4 A> 2
   178    10  1 311 4 1 A>
   179    11  1 311 4 1 1 B>
   180    10  1 311 4 1 1 <A
+  182     8  1 311 4 <A 2 2
   183     7  1 311 <A 23
   184     6  1 310 <B 24
   185     7  1 39 4 A> 24
+  189    11  1 39 4 14 A>
   190    12  1 39 4 15 B>
   191    11  1 39 4 15 <A
+  196     6  1 39 4 <A 25
   197     5  1 39 <A 26
   198     4  1 38 <B 27
   199     5  1 37 4 A> 27
+  206    12  1 37 4 17 A>
   207    13  1 37 4 18 B>
   208    12  1 37 4 18 <A
+  216     4  1 37 4 <A 28
   217     3  1 37 <A 29
   218     2  1 36 <B 210
   219     3  1 35 4 A> 210
+  229    13  1 35 4 110 A>
   230    14  1 35 4 111 B>
   231    13  1 35 4 111 <A
+  242     2  1 35 4 <A 211
   243     1  1 35 <A 212
   244     0  1 34 <B 213
   245     1  1 33 4 A> 213
+  258    14  1 33 4 113 A>
   259    15  1 33 4 114 B>
   260    14  1 33 4 114 <A
+  274     0  1 33 4 <A 214
   275    -1  1 33 <A 215
   276    -2  1 3 3 <B 216
   277    -1  1 3 4 A> 216
+  293    15  1 3 4 116 A>
   294    16  1 3 4 117 B>
   295    15  1 3 4 117 <A
+  312    -2  1 3 4 <A 217
   313    -3  1 3 <A 218
   314    -4  1 <B 219
   315    -3  2 B> 219
+  334    16  2 319 B>
   335    15  2 319 <A
   336    14  2 318 <B 2
   337    15  2 317 4 A> 2
   338    16  2 317 4 1 A>
   339    17  2 317 4 1 1 B>
   340    16  2 317 4 1 1 <A
+  342    14  2 317 4 <A 2 2
   343    13  2 317 <A 23
   344    12  2 316 <B 24
   345    13  2 315 4 A> 24
+  349    17  2 315 4 14 A>
   350    18  2 315 4 15 B>
   351    17  2 315 4 15 <A
+  356    12  2 315 4 <A 25
   357    11  2 315 <A 26
   358    10  2 314 <B 27
   359    11  2 313 4 A> 27
+  366    18  2 313 4 17 A>
   367    19  2 313 4 18 B>
   368    18  2 313 4 18 <A
+  376    10  2 313 4 <A 28
   377     9  2 313 <A 29
   378     8  2 312 <B 210
   379     9  2 311 4 A> 210
+  389    19  2 311 4 110 A>
   390    20  2 311 4 111 B>
   391    19  2 311 4 111 <A
+  402     8  2 311 4 <A 211
   403     7  2 311 <A 212
   404     6  2 310 <B 213
   405     7  2 39 4 A> 213
+  418    20  2 39 4 113 A>
   419    21  2 39 4 114 B>
   420    20  2 39 4 114 <A
+  434     6  2 39 4 <A 214
   435     5  2 39 <A 215
   436     4  2 38 <B 216
   437     5  2 37 4 A> 216
+  453    21  2 37 4 116 A>
   454    22  2 37 4 117 B>
   455    21  2 37 4 117 <A
+  472     4  2 37 4 <A 217
   473     3  2 37 <A 218
   474     2  2 36 <B 219
   475     3  2 35 4 A> 219
+  494    22  2 35 4 119 A>
   495    23  2 35 4 120 B>
   496    22  2 35 4 120 <A
+  516     2  2 35 4 <A 220
   517     1  2 35 <A 221
   518     0  2 34 <B 222
   519     1  2 33 4 A> 222
+  541    23  2 33 4 122 A>
   542    24  2 33 4 123 B>
   543    23  2 33 4 123 <A
+  566     0  2 33 4 <A 223
   567    -1  2 33 <A 224
   568    -2  2 3 3 <B 225
   569    -1  2 3 4 A> 225
+  594    24  2 3 4 125 A>
   595    25  2 3 4 126 B>
   596    24  2 3 4 126 <A
+  622    -2  2 3 4 <A 226
   623    -3  2 3 <A 227
   624    -4  2 <B 228
   625    -3  3 B> 228

After 625 steps (201 lines): state = B.
Produced     29 nonzeros.
Tape index -3, scanned [-4 .. 25].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 514 29 230 204 28 23 0 2 16 6 21
B 111 33 3 52 23   1 7 4 15  
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:13:09 CEST 2010