Comment: This TM produces >5.2x10^105 nonzeros in >1.6x10^211 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | 1RB | 2LA | 4RA | 2LB | 2LA | 1 | right | B | 2 | left | A | 4 | right | A | 2 | left | B | 2 | left | A |
| B | 0LA | 2RB | 3RB | 4RA | 1RH | 0 | left | A | 2 | right | B | 3 | right | B | 4 | right | A | 1 | right | H |
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Step Tpos St Tape contents
0 0 A . . 0
1 1 B . . 10
2 0 A . . 10
3 -1 A . .020
4 0 B . .120
5 1 B . .130
6 0 A . .130
7 -1 B . .120
8 0 B . .220
9 1 B . .230
10 0 A . .230
11 -1 B . .220
12 0 B . .320
13 1 B . .330
14 0 A . .330
15 -1 B . .320
16 0 A . .420
17 1 A . .440
18 2 B . .4410
19 1 A . .4410
20 0 A . .4420
21 -1 A . .4220
22 -2 A . 02220
23 -1 B . 12220
24 0 B . 13220
25 1 B . 13320
26 2 B . 13330
27 1 A . 13330
28 0 B . 13320
29 1 A . 13420
30 2 A . 13440
31 3 B . 134410
32 2 A . 134410
33 1 A . 134420
34 0 A . 134220
35 -1 A . 132220
36 -2 B . 122220
37 -1 B . 222220
38 0 B . 232220
39 1 B . 233220
40 2 B . 233320
41 3 B . 233330
42 2 A . 233330
43 1 B . 233320
44 2 A . 233420
45 3 A . 233440
46 4 B . 2334410
47 3 A . 2334410
48 2 A . 2334420
49 1 A . 2334220
50 0 A . 2332220
51 -1 B . 2322220
52 0 A . 2422220
53 1 A . 2442220
54 2 A . 2444220
55 3 A . 2444420
56 4 A . 2444440
57 5 B . 24444410
58 4 A . 24444410
59 3 A . 24444420
60 2 A . 24444220
61 1 A . 24442220
62 0 A . 24422220
63 -1 A . 24222220
64 -2 A . 22222220
65 -1 A . 42222220
66 0 A . 44222220
67 1 A . 44422220
68 2 A . 44442220
69 3 A . 44444220
70 4 A . 44444420
71 5 A . 44444440
72 6 B . 444444410
73 5 A . 444444410
74 4 A . 444444420
75 3 A . 444444220
76 2 A . 444442220
77 1 A . 444422220
78 0 A . 444222220
79 -1 A . 442222220
80 -2 A . 422222220
81 -3 A .0222222220
82 -2 B .1222222220
83 -1 B .1322222220
84 0 B .1332222220
85 1 B .1333222220
86 2 B .1333322220
87 3 B .1333332220
88 4 B .1333333220
89 5 B .1333333320
90 6 B .1333333330
91 5 A .1333333330
92 4 B .1333333320
93 5 A .1333333420
94 6 A .1333333440
95 7 B .13333334410
96 6 A .13333334410
97 5 A .13333334420
98 4 A .13333334220
99 3 A .13333332220
100 2 B .13333322220
101 3 A .13333422220
102 4 A .13333442220
103 5 A .13333444220
104 6 A .13333444420
105 7 A .13333444440
106 8 B .133334444410
107 7 A .133334444410
108 6 A .133334444420
109 5 A .133334444220
110 4 A .133334442220
111 3 A .133334422220
112 2 A .133334222220
113 1 A .133332222220
114 0 B .133322222220
115 1 A .133422222220
116 2 A .133442222220
117 3 A .133444222220
118 4 A .133444422220
119 5 A .133444442220
120 6 A .133444444220
121 7 A .133444444420
122 8 A .133444444440
123 9 B .1334444444410
124 8 A .1334444444410
125 7 A .1334444444420
126 6 A .1334444444220
127 5 A .1334444442220
128 4 A .1334444422220
129 3 A .1334444222220
130 2 A .1334442222220
131 1 A .1334422222220
132 0 A .1334222222220
133 -1 A .1332222222220
134 -2 B .1322222222220
135 -1 A .1422222222220
136 0 A .1442222222220
137 1 A .1444222222220
138 2 A .1444422222220
139 3 A .1444442222220
140 4 A .1444444222220
141 5 A .1444444422220
142 6 A .1444444442220
143 7 A .1444444444220
144 8 A .1444444444420
145 9 A .1444444444440
146 10 B .14444444444410
147 9 A .14444444444410
148 8 A .14444444444420
149 7 A .14444444444220
150 6 A .14444444442220
151 5 A .14444444422220
152 4 A .14444444222220
153 3 A .14444442222220
154 2 A .14444422222220
155 1 A .14444222222220
156 0 A .14442222222220
157 -1 A .14422222222220
158 -2 A .14222222222220
159 -3 A .12222222222220
160 -4 A 022222222222220
161 -3 B 122222222222220
162 -2 B 132222222222220
163 -1 B 133222222222220
164 0 B 133322222222220
165 1 B 133332222222220
166 2 B 133333222222220
167 3 B 133333322222220
168 4 B 133333332222220
169 5 B 133333333222220
170 6 B 133333333322220
171 7 B 133333333332220
172 8 B 133333333333220
173 9 B 133333333333320
174 10 B 133333333333330
175 9 A 133333333333330
176 8 B 133333333333320
177 9 A 133333333333420
178 10 A 133333333333440
179 11 B 1333333333334410
180 10 A 1333333333334410
181 9 A 1333333333334420
182 8 A 1333333333334220
183 7 A 1333333333332220
184 6 B 1333333333322220
185 7 A 1333333333422220
186 8 A 1333333333442220
187 9 A 1333333333444220
188 10 A 1333333333444420
189 11 A 1333333333444440
190 12 B 13333333334444410
191 11 A 13333333334444410
192 10 A 13333333334444420
193 9 A 13333333334444220
194 8 A 13333333334442220
195 7 A 13333333334422220
196 6 A 13333333334222220
197 5 A 13333333332222220
198 4 B 13333333322222220
199 5 A 13333333422222220
200 6 A 13333333442222220
After 200 steps (201 lines): state = A.
Produced 16 nonzeros.
Tape index 6, scanned [-4 .. 12].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 136 | 16 | 13 | 42 | 14 | 51 | 0 | 2 | 16 | 6 | 20 |
| B | 64 | 19 | 2 | 32 | 11 | 1 | 7 | 4 | 15 | ||