2-state 5-symbol #l from T.J. & S. Ligocki

Comment: This TM produces >5.2x10^105 nonzeros in >1.6x10^211 steps.

State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 2LA 4RA 2LB 2LA 1 right B 2 left A 4 right A 2 left B 2 left A
B 0LA 2RB 3RB 4RA 1RH 0 left A 2 right B 3 right B 4 right A 1 right H
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing macro factor 1.

Steps BasSteps BasTpos  Tape contents
    0        0       0  A>
    1        1       1  1 B>
    2        2       0  1 <A
    3        3      -1  <A 2
    4        4       0  1 B> 2
    5        5       1  1 3 B>
    6        6       0  1 3 <A
    7        7      -1  1 <B 2
    8        8       0  2 B> 2
    9        9       1  2 3 B>
   10       10       0  2 3 <A
   11       11      -1  2 <B 2
   12       12       0  3 B> 2
   13       13       1  32 B>
   14       14       0  32 <A
   15       15      -1  3 <B 2
   16       16       0  4 A> 2
   17       17       1  42 A>
   18       18       2  42 1 B>
   19       19       1  42 1 <A
   20       20       0  42 <A 2
   21       22      -2  <A 23
   22       23      -1  1 B> 23
   23       26       2  1 33 B>
   24       27       1  1 33 <A
   25       28       0  1 32 <B 2
   26       29       1  1 3 4 A> 2
   27       30       2  1 3 42 A>
   28       31       3  1 3 42 1 B>
   29       32       2  1 3 42 1 <A
   30       33       1  1 3 42 <A 2
   31       35      -1  1 3 <A 23
   32       36      -2  1 <B 24
   33       37      -1  2 B> 24
   34       41       3  2 34 B>
   35       42       2  2 34 <A
   36       43       1  2 33 <B 2
   37       44       2  2 32 4 A> 2
   38       45       3  2 32 42 A>
   39       46       4  2 32 42 1 B>
   40       47       3  2 32 42 1 <A
   41       48       2  2 32 42 <A 2
   42       50       0  2 32 <A 23
   43       51      -1  2 3 <B 24
   44       52       0  2 4 A> 24
   45       56       4  2 45 A>
   46       57       5  2 45 1 B>
   47       58       4  2 45 1 <A
   48       59       3  2 45 <A 2
   49       64      -2  2 <A 26
   50       65      -1  4 A> 26
   51       71       5  47 A>
   52       72       6  47 1 B>
   53       73       5  47 1 <A
   54       74       4  47 <A 2
   55       81      -3  <A 28
   56       82      -2  1 B> 28
   57       90       6  1 38 B>
   58       91       5  1 38 <A
   59       92       4  1 37 <B 2
   60       93       5  1 36 4 A> 2
   61       94       6  1 36 42 A>
   62       95       7  1 36 42 1 B>
   63       96       6  1 36 42 1 <A
   64       97       5  1 36 42 <A 2
   65       99       3  1 36 <A 23
   66      100       2  1 35 <B 24
   67      101       3  1 34 4 A> 24
   68      105       7  1 34 45 A>
   69      106       8  1 34 45 1 B>
   70      107       7  1 34 45 1 <A
   71      108       6  1 34 45 <A 2
   72      113       1  1 34 <A 26
   73      114       0  1 33 <B 27
   74      115       1  1 32 4 A> 27
   75      122       8  1 32 48 A>
   76      123       9  1 32 48 1 B>
   77      124       8  1 32 48 1 <A
   78      125       7  1 32 48 <A 2
   79      133      -1  1 32 <A 29
   80      134      -2  1 3 <B 210
   81      135      -1  1 4 A> 210
   82      145       9  1 411 A>
   83      146      10  1 411 1 B>
   84      147       9  1 411 1 <A
   85      148       8  1 411 <A 2
   86      159      -3  1 <A 212
   87      160      -4  <A 213
   88      161      -3  1 B> 213
   89      174      10  1 313 B>
   90      175       9  1 313 <A
   91      176       8  1 312 <B 2
   92      177       9  1 311 4 A> 2
   93      178      10  1 311 42 A>
   94      179      11  1 311 42 1 B>
   95      180      10  1 311 42 1 <A
   96      181       9  1 311 42 <A 2
   97      183       7  1 311 <A 23
   98      184       6  1 310 <B 24
   99      185       7  1 39 4 A> 24
  100      189      11  1 39 45 A>
  101      190      12  1 39 45 1 B>
  102      191      11  1 39 45 1 <A
  103      192      10  1 39 45 <A 2
  104      197       5  1 39 <A 26
  105      198       4  1 38 <B 27
  106      199       5  1 37 4 A> 27
  107      206      12  1 37 48 A>
  108      207      13  1 37 48 1 B>
  109      208      12  1 37 48 1 <A
  110      209      11  1 37 48 <A 2
  111      217       3  1 37 <A 29
  112      218       2  1 36 <B 210
  113      219       3  1 35 4 A> 210
  114      229      13  1 35 411 A>
  115      230      14  1 35 411 1 B>
  116      231      13  1 35 411 1 <A
  117      232      12  1 35 411 <A 2
  118      243       1  1 35 <A 212
  119      244       0  1 34 <B 213
  120      245       1  1 33 4 A> 213
  121      258      14  1 33 414 A>
  122      259      15  1 33 414 1 B>
  123      260      14  1 33 414 1 <A
  124      261      13  1 33 414 <A 2
  125      275      -1  1 33 <A 215
  126      276      -2  1 32 <B 216
  127      277      -1  1 3 4 A> 216
  128      293      15  1 3 417 A>
  129      294      16  1 3 417 1 B>
  130      295      15  1 3 417 1 <A
  131      296      14  1 3 417 <A 2
  132      313      -3  1 3 <A 218
  133      314      -4  1 <B 219
  134      315      -3  2 B> 219
  135      334      16  2 319 B>
  136      335      15  2 319 <A
  137      336      14  2 318 <B 2
  138      337      15  2 317 4 A> 2
  139      338      16  2 317 42 A>
  140      339      17  2 317 42 1 B>
  141      340      16  2 317 42 1 <A
  142      341      15  2 317 42 <A 2
  143      343      13  2 317 <A 23
  144      344      12  2 316 <B 24
  145      345      13  2 315 4 A> 24
  146      349      17  2 315 45 A>
  147      350      18  2 315 45 1 B>
  148      351      17  2 315 45 1 <A
  149      352      16  2 315 45 <A 2
  150      357      11  2 315 <A 26
  151      358      10  2 314 <B 27
  152      359      11  2 313 4 A> 27
  153      366      18  2 313 48 A>
  154      367      19  2 313 48 1 B>
  155      368      18  2 313 48 1 <A
  156      369      17  2 313 48 <A 2
  157      377       9  2 313 <A 29
  158      378       8  2 312 <B 210
  159      379       9  2 311 4 A> 210
  160      389      19  2 311 411 A>
  161      390      20  2 311 411 1 B>
  162      391      19  2 311 411 1 <A
  163      392      18  2 311 411 <A 2
  164      403       7  2 311 <A 212
  165      404       6  2 310 <B 213
  166      405       7  2 39 4 A> 213
  167      418      20  2 39 414 A>
  168      419      21  2 39 414 1 B>
  169      420      20  2 39 414 1 <A
  170      421      19  2 39 414 <A 2
  171      435       5  2 39 <A 215
  172      436       4  2 38 <B 216
  173      437       5  2 37 4 A> 216
  174      453      21  2 37 417 A>
  175      454      22  2 37 417 1 B>
  176      455      21  2 37 417 1 <A
  177      456      20  2 37 417 <A 2
  178      473       3  2 37 <A 218
  179      474       2  2 36 <B 219
  180      475       3  2 35 4 A> 219
  181      494      22  2 35 420 A>
  182      495      23  2 35 420 1 B>
  183      496      22  2 35 420 1 <A
  184      497      21  2 35 420 <A 2
  185      517       1  2 35 <A 221
  186      518       0  2 34 <B 222
  187      519       1  2 33 4 A> 222
  188      541      23  2 33 423 A>
  189      542      24  2 33 423 1 B>
  190      543      23  2 33 423 1 <A
  191      544      22  2 33 423 <A 2
  192      567      -1  2 33 <A 224
  193      568      -2  2 32 <B 225
  194      569      -1  2 3 4 A> 225
  195      594      24  2 3 426 A>
  196      595      25  2 3 426 1 B>
  197      596      24  2 3 426 1 <A
  198      597      23  2 3 426 <A 2
  199      623      -3  2 3 <A 227
  200      624      -4  2 <B 228

Lines:       201
Top steps:   200
Macro steps: 200
Basic steps: 624
Tape index:  -4
nonzeros:    29
log10(nonzeros):    1.462
log10(steps   ):    2.795

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    nbs 5
    T 2-state 5-symbol #l from T.J. & S. Ligocki
    5T  1RB 2LA 4RA 2LB 2LA  0LA 2RB 3RB 4RA 1RH
    : >5.2x10^105  >1.6x10^211
    L 4
    M	201
    pref	sim
    machv Lig25_l  	just simple
    machv Lig25_l-r	with repetitions reduced
    machv Lig25_l-1	with tape symbol exponents
    machv Lig25_l-m	as 1-macro machine
    machv Lig25_l-a	as 1-macro machine with pure additive config-TRs
    iam	Lig25_l-m
    mtype	1
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:12:56 CEST 2010
    edate	Tue Jul  6 22:12:57 CEST 2010
    bnspeed	1
    short	7

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:12:56 CEST 2010
Ready: Tue Jul 6 22:12:57 CEST 2010