Comment: This TM produces >5.2x10^105 nonzeros in >1.6x10^211 steps.
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | 1RB | 2LA | 4RA | 2LB | 2LA | 1 | right | B | 2 | left | A | 4 | right | A | 2 | left | B | 2 | left | A |
| B | 0LA | 2RB | 3RB | 4RA | 1RH | 0 | left | A | 2 | right | B | 3 | right | B | 4 | right | A | 1 | right | H |
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Pushing initial machine.
Pushing macro factor 1.
Steps BasSteps BasTpos Tape contents
0 0 0 A>
1 1 1 1 B>
2 2 0 1 <A
3 3 -1 <A 2
4 4 0 1 B> 2
5 5 1 1 3 B>
6 6 0 1 3 <A
7 7 -1 1 <B 2
8 8 0 2 B> 2
9 9 1 2 3 B>
10 10 0 2 3 <A
11 11 -1 2 <B 2
12 12 0 3 B> 2
13 13 1 32 B>
14 14 0 32 <A
15 15 -1 3 <B 2
16 16 0 4 A> 2
17 17 1 42 A>
18 18 2 42 1 B>
19 19 1 42 1 <A
20 20 0 42 <A 2
21 22 -2 <A 23
22 23 -1 1 B> 23
23 26 2 1 33 B>
24 27 1 1 33 <A
25 28 0 1 32 <B 2
26 29 1 1 3 4 A> 2
27 30 2 1 3 42 A>
28 31 3 1 3 42 1 B>
29 32 2 1 3 42 1 <A
30 33 1 1 3 42 <A 2
31 35 -1 1 3 <A 23
32 36 -2 1 <B 24
33 37 -1 2 B> 24
34 41 3 2 34 B>
35 42 2 2 34 <A
36 43 1 2 33 <B 2
37 44 2 2 32 4 A> 2
38 45 3 2 32 42 A>
39 46 4 2 32 42 1 B>
40 47 3 2 32 42 1 <A
41 48 2 2 32 42 <A 2
42 50 0 2 32 <A 23
43 51 -1 2 3 <B 24
44 52 0 2 4 A> 24
45 56 4 2 45 A>
46 57 5 2 45 1 B>
47 58 4 2 45 1 <A
48 59 3 2 45 <A 2
49 64 -2 2 <A 26
50 65 -1 4 A> 26
51 71 5 47 A>
52 72 6 47 1 B>
53 73 5 47 1 <A
54 74 4 47 <A 2
55 81 -3 <A 28
56 82 -2 1 B> 28
57 90 6 1 38 B>
58 91 5 1 38 <A
59 92 4 1 37 <B 2
60 93 5 1 36 4 A> 2
61 94 6 1 36 42 A>
62 95 7 1 36 42 1 B>
63 96 6 1 36 42 1 <A
64 97 5 1 36 42 <A 2
65 99 3 1 36 <A 23
66 100 2 1 35 <B 24
67 101 3 1 34 4 A> 24
68 105 7 1 34 45 A>
69 106 8 1 34 45 1 B>
70 107 7 1 34 45 1 <A
71 108 6 1 34 45 <A 2
72 113 1 1 34 <A 26
73 114 0 1 33 <B 27
74 115 1 1 32 4 A> 27
75 122 8 1 32 48 A>
76 123 9 1 32 48 1 B>
77 124 8 1 32 48 1 <A
78 125 7 1 32 48 <A 2
79 133 -1 1 32 <A 29
80 134 -2 1 3 <B 210
81 135 -1 1 4 A> 210
82 145 9 1 411 A>
83 146 10 1 411 1 B>
84 147 9 1 411 1 <A
85 148 8 1 411 <A 2
86 159 -3 1 <A 212
87 160 -4 <A 213
88 161 -3 1 B> 213
89 174 10 1 313 B>
90 175 9 1 313 <A
91 176 8 1 312 <B 2
92 177 9 1 311 4 A> 2
93 178 10 1 311 42 A>
94 179 11 1 311 42 1 B>
95 180 10 1 311 42 1 <A
96 181 9 1 311 42 <A 2
97 183 7 1 311 <A 23
98 184 6 1 310 <B 24
99 185 7 1 39 4 A> 24
100 189 11 1 39 45 A>
101 190 12 1 39 45 1 B>
102 191 11 1 39 45 1 <A
103 192 10 1 39 45 <A 2
104 197 5 1 39 <A 26
105 198 4 1 38 <B 27
106 199 5 1 37 4 A> 27
107 206 12 1 37 48 A>
108 207 13 1 37 48 1 B>
109 208 12 1 37 48 1 <A
110 209 11 1 37 48 <A 2
111 217 3 1 37 <A 29
112 218 2 1 36 <B 210
113 219 3 1 35 4 A> 210
114 229 13 1 35 411 A>
115 230 14 1 35 411 1 B>
116 231 13 1 35 411 1 <A
117 232 12 1 35 411 <A 2
118 243 1 1 35 <A 212
119 244 0 1 34 <B 213
120 245 1 1 33 4 A> 213
121 258 14 1 33 414 A>
122 259 15 1 33 414 1 B>
123 260 14 1 33 414 1 <A
124 261 13 1 33 414 <A 2
125 275 -1 1 33 <A 215
126 276 -2 1 32 <B 216
127 277 -1 1 3 4 A> 216
128 293 15 1 3 417 A>
129 294 16 1 3 417 1 B>
130 295 15 1 3 417 1 <A
131 296 14 1 3 417 <A 2
132 313 -3 1 3 <A 218
133 314 -4 1 <B 219
134 315 -3 2 B> 219
135 334 16 2 319 B>
136 335 15 2 319 <A
137 336 14 2 318 <B 2
138 337 15 2 317 4 A> 2
139 338 16 2 317 42 A>
140 339 17 2 317 42 1 B>
141 340 16 2 317 42 1 <A
142 341 15 2 317 42 <A 2
143 343 13 2 317 <A 23
144 344 12 2 316 <B 24
145 345 13 2 315 4 A> 24
146 349 17 2 315 45 A>
147 350 18 2 315 45 1 B>
148 351 17 2 315 45 1 <A
149 352 16 2 315 45 <A 2
150 357 11 2 315 <A 26
151 358 10 2 314 <B 27
152 359 11 2 313 4 A> 27
153 366 18 2 313 48 A>
154 367 19 2 313 48 1 B>
155 368 18 2 313 48 1 <A
156 369 17 2 313 48 <A 2
157 377 9 2 313 <A 29
158 378 8 2 312 <B 210
159 379 9 2 311 4 A> 210
160 389 19 2 311 411 A>
161 390 20 2 311 411 1 B>
162 391 19 2 311 411 1 <A
163 392 18 2 311 411 <A 2
164 403 7 2 311 <A 212
165 404 6 2 310 <B 213
166 405 7 2 39 4 A> 213
167 418 20 2 39 414 A>
168 419 21 2 39 414 1 B>
169 420 20 2 39 414 1 <A
170 421 19 2 39 414 <A 2
171 435 5 2 39 <A 215
172 436 4 2 38 <B 216
173 437 5 2 37 4 A> 216
174 453 21 2 37 417 A>
175 454 22 2 37 417 1 B>
176 455 21 2 37 417 1 <A
177 456 20 2 37 417 <A 2
178 473 3 2 37 <A 218
179 474 2 2 36 <B 219
180 475 3 2 35 4 A> 219
181 494 22 2 35 420 A>
182 495 23 2 35 420 1 B>
183 496 22 2 35 420 1 <A
184 497 21 2 35 420 <A 2
185 517 1 2 35 <A 221
186 518 0 2 34 <B 222
187 519 1 2 33 4 A> 222
188 541 23 2 33 423 A>
189 542 24 2 33 423 1 B>
190 543 23 2 33 423 1 <A
191 544 22 2 33 423 <A 2
192 567 -1 2 33 <A 224
193 568 -2 2 32 <B 225
194 569 -1 2 3 4 A> 225
195 594 24 2 3 426 A>
196 595 25 2 3 426 1 B>
197 596 24 2 3 426 1 <A
198 597 23 2 3 426 <A 2
199 623 -3 2 3 <A 227
200 624 -4 2 <B 228
Lines: 201
Top steps: 200
Macro steps: 200
Basic steps: 624
Tape index: -4
nonzeros: 29
log10(nonzeros): 1.462
log10(steps ): 2.795
Input to awk program:
gohalt 1
nbs 5
T 2-state 5-symbol #l from T.J. & S. Ligocki
5T 1RB 2LA 4RA 2LB 2LA 0LA 2RB 3RB 4RA 1RH
: >5.2x10^105 >1.6x10^211
L 4
M 201
pref sim
machv Lig25_l just simple
machv Lig25_l-r with repetitions reduced
machv Lig25_l-1 with tape symbol exponents
machv Lig25_l-m as 1-macro machine
machv Lig25_l-a as 1-macro machine with pure additive config-TRs
iam Lig25_l-m
mtype 1
mmtyp 1
r 1
H 1
mac 0
E 2
sympr
HM 1
date Tue Jul 6 22:12:56 CEST 2010
edate Tue Jul 6 22:12:57 CEST 2010
bnspeed 1
short 7
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $
$Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $
$Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $
$Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $
$Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $
$Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $
bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:12:56 CEST 2010