Comment: This TM produces >5.2x10^105 nonzeros in >1.6x10^211 steps.
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | 1RB | 2LA | 4RA | 2LB | 2LA | 1 | right | B | 2 | left | A | 4 | right | A | 2 | left | B | 2 | left | A |
B | 0LA | 2RB | 3RB | 4RA | 1RH | 0 | left | A | 2 | right | B | 3 | right | B | 4 | right | A | 1 | right | H |
The same TM just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. Simulation is done as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Pushing initial machine. Pushing macro factor 1. Steps BasSteps BasTpos Tape contents 0 0 0 A> 1 1 1 1 B> 2 2 0 1 <A 3 3 -1 <A 2 4 4 0 1 B> 2 5 5 1 1 3 B> 6 6 0 1 3 <A 7 7 -1 1 <B 2 8 8 0 2 B> 2 9 9 1 2 3 B> 10 10 0 2 3 <A 11 11 -1 2 <B 2 12 12 0 3 B> 2 13 13 1 32 B> 14 14 0 32 <A 15 15 -1 3 <B 2 16 16 0 4 A> 2 17 17 1 42 A> 18 18 2 42 1 B> 19 19 1 42 1 <A 20 20 0 42 <A 2 21 22 -2 <A 23 22 23 -1 1 B> 23 23 26 2 1 33 B> 24 27 1 1 33 <A 25 28 0 1 32 <B 2 26 29 1 1 3 4 A> 2 27 30 2 1 3 42 A> 28 31 3 1 3 42 1 B> 29 32 2 1 3 42 1 <A 30 33 1 1 3 42 <A 2 31 35 -1 1 3 <A 23 32 36 -2 1 <B 24 33 37 -1 2 B> 24 34 41 3 2 34 B> 35 42 2 2 34 <A 36 43 1 2 33 <B 2 37 44 2 2 32 4 A> 2 38 45 3 2 32 42 A> 39 46 4 2 32 42 1 B> 40 47 3 2 32 42 1 <A 41 48 2 2 32 42 <A 2 42 50 0 2 32 <A 23 43 51 -1 2 3 <B 24 44 52 0 2 4 A> 24 45 56 4 2 45 A> 46 57 5 2 45 1 B> 47 58 4 2 45 1 <A 48 59 3 2 45 <A 2 49 64 -2 2 <A 26 50 65 -1 4 A> 26 51 71 5 47 A> 52 72 6 47 1 B> 53 73 5 47 1 <A 54 74 4 47 <A 2 55 81 -3 <A 28 56 82 -2 1 B> 28 57 90 6 1 38 B> 58 91 5 1 38 <A 59 92 4 1 37 <B 2 60 93 5 1 36 4 A> 2 61 94 6 1 36 42 A> 62 95 7 1 36 42 1 B> 63 96 6 1 36 42 1 <A 64 97 5 1 36 42 <A 2 65 99 3 1 36 <A 23 66 100 2 1 35 <B 24 67 101 3 1 34 4 A> 24 68 105 7 1 34 45 A> 69 106 8 1 34 45 1 B> 70 107 7 1 34 45 1 <A 71 108 6 1 34 45 <A 2 72 113 1 1 34 <A 26 73 114 0 1 33 <B 27 74 115 1 1 32 4 A> 27 75 122 8 1 32 48 A> 76 123 9 1 32 48 1 B> 77 124 8 1 32 48 1 <A 78 125 7 1 32 48 <A 2 79 133 -1 1 32 <A 29 80 134 -2 1 3 <B 210 81 135 -1 1 4 A> 210 82 145 9 1 411 A> 83 146 10 1 411 1 B> 84 147 9 1 411 1 <A 85 148 8 1 411 <A 2 86 159 -3 1 <A 212 87 160 -4 <A 213 88 161 -3 1 B> 213 89 174 10 1 313 B> 90 175 9 1 313 <A 91 176 8 1 312 <B 2 92 177 9 1 311 4 A> 2 93 178 10 1 311 42 A> 94 179 11 1 311 42 1 B> 95 180 10 1 311 42 1 <A 96 181 9 1 311 42 <A 2 97 183 7 1 311 <A 23 98 184 6 1 310 <B 24 99 185 7 1 39 4 A> 24 100 189 11 1 39 45 A> 101 190 12 1 39 45 1 B> 102 191 11 1 39 45 1 <A 103 192 10 1 39 45 <A 2 104 197 5 1 39 <A 26 105 198 4 1 38 <B 27 106 199 5 1 37 4 A> 27 107 206 12 1 37 48 A> 108 207 13 1 37 48 1 B> 109 208 12 1 37 48 1 <A 110 209 11 1 37 48 <A 2 111 217 3 1 37 <A 29 112 218 2 1 36 <B 210 113 219 3 1 35 4 A> 210 114 229 13 1 35 411 A> 115 230 14 1 35 411 1 B> 116 231 13 1 35 411 1 <A 117 232 12 1 35 411 <A 2 118 243 1 1 35 <A 212 119 244 0 1 34 <B 213 120 245 1 1 33 4 A> 213 121 258 14 1 33 414 A> 122 259 15 1 33 414 1 B> 123 260 14 1 33 414 1 <A 124 261 13 1 33 414 <A 2 125 275 -1 1 33 <A 215 126 276 -2 1 32 <B 216 127 277 -1 1 3 4 A> 216 128 293 15 1 3 417 A> 129 294 16 1 3 417 1 B> 130 295 15 1 3 417 1 <A 131 296 14 1 3 417 <A 2 132 313 -3 1 3 <A 218 133 314 -4 1 <B 219 134 315 -3 2 B> 219 135 334 16 2 319 B> 136 335 15 2 319 <A 137 336 14 2 318 <B 2 138 337 15 2 317 4 A> 2 139 338 16 2 317 42 A> 140 339 17 2 317 42 1 B> 141 340 16 2 317 42 1 <A 142 341 15 2 317 42 <A 2 143 343 13 2 317 <A 23 144 344 12 2 316 <B 24 145 345 13 2 315 4 A> 24 146 349 17 2 315 45 A> 147 350 18 2 315 45 1 B> 148 351 17 2 315 45 1 <A 149 352 16 2 315 45 <A 2 150 357 11 2 315 <A 26 151 358 10 2 314 <B 27 152 359 11 2 313 4 A> 27 153 366 18 2 313 48 A> 154 367 19 2 313 48 1 B> 155 368 18 2 313 48 1 <A 156 369 17 2 313 48 <A 2 157 377 9 2 313 <A 29 158 378 8 2 312 <B 210 159 379 9 2 311 4 A> 210 160 389 19 2 311 411 A> 161 390 20 2 311 411 1 B> 162 391 19 2 311 411 1 <A 163 392 18 2 311 411 <A 2 164 403 7 2 311 <A 212 165 404 6 2 310 <B 213 166 405 7 2 39 4 A> 213 167 418 20 2 39 414 A> 168 419 21 2 39 414 1 B> 169 420 20 2 39 414 1 <A 170 421 19 2 39 414 <A 2 171 435 5 2 39 <A 215 172 436 4 2 38 <B 216 173 437 5 2 37 4 A> 216 174 453 21 2 37 417 A> 175 454 22 2 37 417 1 B> 176 455 21 2 37 417 1 <A 177 456 20 2 37 417 <A 2 178 473 3 2 37 <A 218 179 474 2 2 36 <B 219 180 475 3 2 35 4 A> 219 181 494 22 2 35 420 A> 182 495 23 2 35 420 1 B> 183 496 22 2 35 420 1 <A 184 497 21 2 35 420 <A 2 185 517 1 2 35 <A 221 186 518 0 2 34 <B 222 187 519 1 2 33 4 A> 222 188 541 23 2 33 423 A> 189 542 24 2 33 423 1 B> 190 543 23 2 33 423 1 <A 191 544 22 2 33 423 <A 2 192 567 -1 2 33 <A 224 193 568 -2 2 32 <B 225 194 569 -1 2 3 4 A> 225 195 594 24 2 3 426 A> 196 595 25 2 3 426 1 B> 197 596 24 2 3 426 1 <A 198 597 23 2 3 426 <A 2 199 623 -3 2 3 <A 227 200 624 -4 2 <B 228 Lines: 201 Top steps: 200 Macro steps: 200 Basic steps: 624 Tape index: -4 nonzeros: 29 log10(nonzeros): 1.462 log10(steps ): 2.795
Input to awk program: gohalt 1 nbs 5 T 2-state 5-symbol #l from T.J. & S. Ligocki 5T 1RB 2LA 4RA 2LB 2LA 0LA 2RB 3RB 4RA 1RH : >5.2x10^105 >1.6x10^211 L 4 M 201 pref sim machv Lig25_l just simple machv Lig25_l-r with repetitions reduced machv Lig25_l-1 with tape symbol exponents machv Lig25_l-m as 1-macro machine machv Lig25_l-a as 1-macro machine with pure additive config-TRs iam Lig25_l-m mtype 1 mmtyp 1 r 1 H 1 mac 0 E 2 sympr HM 1 date Tue Jul 6 22:12:56 CEST 2010 edate Tue Jul 6 22:12:57 CEST 2010 bnspeed 1 short 7Start: Tue Jul 6 22:12:56 CEST 2010
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;