Comment: This TM produces >9.3x10^30 nonzeros in >5.2x10^61 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | 1RB | 2LA | 4RA | 1LB | 2LA | 1 | right | B | 2 | left | A | 4 | right | A | 1 | left | B | 2 | left | A |
| B | 0LA | 2RB | 3RB | 2RA | 1RH | 0 | left | A | 2 | right | B | 3 | right | B | 2 | right | A | 1 | right | H |
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.
Step Tpos St Tape contents
0 0 A . . 0
1 1 B . . 10
2 0 A . . 10
3 -1 A . .020
4 0 B . .120
5 1 B . .130
6 0 A . .130
7 -1 B . .110
8 0 B . .210
9 1 B . .220
10 0 A . .220
11 1 A . .240
12 2 B . .2410
13 1 A . .2410
14 0 A . .2420
15 -1 A . .2220
16 0 A . .4220
17 1 A . .4420
18 2 A . .4440
19 3 B . .44410
20 2 A . .44410
21 1 A . .44420
22 0 A . .44220
23 -1 A . .42220
24 -2 A . 022220
25 -1 B . 122220
26 0 B . 132220
27 1 B . 133220
28 2 B . 133320
29 3 B . 133330
30 2 A . 133330
31 1 B . 133310
32 2 A . 133210
33 1 A . 133220
34 2 A . 133420
35 3 A . 133440
36 4 B . 1334410
37 3 A . 1334410
38 2 A . 1334420
39 1 A . 1334220
40 0 A . 1332220
41 -1 B . 1312220
42 0 A . 1212220
43 -1 A . 1222220
44 0 A . 1422220
45 1 A . 1442220
46 2 A . 1444220
47 3 A . 1444420
48 4 A . 1444440
49 5 B . 14444410
50 4 A . 14444410
51 3 A . 14444420
52 2 A . 14444220
53 1 A . 14442220
54 0 A . 14422220
55 -1 A . 14222220
56 -2 A . 12222220
57 -3 A .022222220
58 -2 B .122222220
59 -1 B .132222220
60 0 B .133222220
61 1 B .133322220
62 2 B .133332220
63 3 B .133333220
64 4 B .133333320
65 5 B .133333330
66 4 A .133333330
67 3 B .133333310
68 4 A .133333210
69 3 A .133333220
70 4 A .133333420
71 5 A .133333440
72 6 B .1333334410
73 5 A .1333334410
74 4 A .1333334420
75 3 A .1333334220
76 2 A .1333332220
77 1 B .1333312220
78 2 A .1333212220
79 1 A .1333222220
80 2 A .1333422220
81 3 A .1333442220
82 4 A .1333444220
83 5 A .1333444420
84 6 A .1333444440
85 7 B .13334444410
86 6 A .13334444410
87 5 A .13334444420
88 4 A .13334444220
89 3 A .13334442220
90 2 A .13334422220
91 1 A .13334222220
92 0 A .13332222220
93 -1 B .13312222220
94 0 A .13212222220
95 -1 A .13222222220
96 0 A .13422222220
97 1 A .13442222220
98 2 A .13444222220
99 3 A .13444422220
100 4 A .13444442220
101 5 A .13444444220
102 6 A .13444444420
103 7 A .13444444440
104 8 B .134444444410
105 7 A .134444444410
106 6 A .134444444420
107 5 A .134444444220
108 4 A .134444442220
109 3 A .134444422220
110 2 A .134444222220
111 1 A .134442222220
112 0 A .134422222220
113 -1 A .134222222220
114 -2 A .132222222220
115 -3 B .112222222220
116 -2 B .212222222220
117 -1 B .222222222220
118 0 B .223222222220
119 1 B .223322222220
120 2 B .223332222220
121 3 B .223333222220
122 4 B .223333322220
123 5 B .223333332220
124 6 B .223333333220
125 7 B .223333333320
126 8 B .223333333330
127 7 A .223333333330
128 6 B .223333333310
129 7 A .223333333210
130 6 A .223333333220
131 7 A .223333333420
132 8 A .223333333440
133 9 B .2233333334410
134 8 A .2233333334410
135 7 A .2233333334420
136 6 A .2233333334220
137 5 A .2233333332220
138 4 B .2233333312220
139 5 A .2233333212220
140 4 A .2233333222220
141 5 A .2233333422220
142 6 A .2233333442220
143 7 A .2233333444220
144 8 A .2233333444420
145 9 A .2233333444440
146 10 B .22333334444410
147 9 A .22333334444410
148 8 A .22333334444420
149 7 A .22333334444220
150 6 A .22333334442220
151 5 A .22333334422220
152 4 A .22333334222220
153 3 A .22333332222220
154 2 B .22333312222220
155 3 A .22333212222220
156 2 A .22333222222220
157 3 A .22333422222220
158 4 A .22333442222220
159 5 A .22333444222220
160 6 A .22333444422220
161 7 A .22333444442220
162 8 A .22333444444220
163 9 A .22333444444420
164 10 A .22333444444440
165 11 B .223334444444410
166 10 A .223334444444410
167 9 A .223334444444420
168 8 A .223334444444220
169 7 A .223334444442220
170 6 A .223334444422220
171 5 A .223334444222220
172 4 A .223334442222220
173 3 A .223334422222220
174 2 A .223334222222220
175 1 A .223332222222220
176 0 B .223312222222220
177 1 A .223212222222220
178 0 A .223222222222220
179 1 A .223422222222220
180 2 A .223442222222220
181 3 A .223444222222220
182 4 A .223444422222220
183 5 A .223444442222220
184 6 A .223444444222220
185 7 A .223444444422220
186 8 A .223444444442220
187 9 A .223444444444220
188 10 A .223444444444420
189 11 A .223444444444440
190 12 B .2234444444444410
191 11 A .2234444444444410
192 10 A .2234444444444420
193 9 A .2234444444444220
194 8 A .2234444444442220
195 7 A .2234444444422220
196 6 A .2234444444222220
197 5 A .2234444442222220
198 4 A .2234444422222220
199 3 A .2234444222222220
200 2 A .2234442222222220
After 200 steps (201 lines): state = A.
Produced 15 nonzeros.
Tape index 2, scanned [-3 .. 12].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 149 | 15 | 22 | 52 | 11 | 49 | 0 | 2 | 10 | 6 | 14 |
| B | 51 | 17 | 4 | 21 | 9 | 1 | 7 | 4 | 31 | ||