2-state 5-symbol #k from T.J. & S. Ligocki

Comment: This TM produces >9.3x10^30 nonzeros in >5.2x10^61 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 2LA 4RA 1LB 2LA 1 right B 2 left A 4 right A 1 left B 2 left A
B 0LA 2RB 3RB 2RA 1RH 0 left A 2 right B 3 right B 2 right A 1 right H
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . 0
     1    1 B . . 10
     2    0 A . . 10
     3   -1 A . .020
     4    0 B . .120
     5    1 B . .130
     6    0 A . .130
     7   -1 B . .110
     8    0 B . .210
     9    1 B . .220
    10    0 A . .220
    11    1 A . .240
    12    2 B . .2410
    13    1 A . .2410
    14    0 A . .2420
    15   -1 A . .2220
    16    0 A . .4220
    17    1 A . .4420
    18    2 A . .4440
    19    3 B . .44410
    20    2 A . .44410
    21    1 A . .44420
    22    0 A . .44220
    23   -1 A . .42220
    24   -2 A . 022220
    25   -1 B . 122220
    26    0 B . 132220
    27    1 B . 133220
    28    2 B . 133320
    29    3 B . 133330
    30    2 A . 133330
    31    1 B . 133310
    32    2 A . 133210
    33    1 A . 133220
    34    2 A . 133420
    35    3 A . 133440
    36    4 B . 1334410
    37    3 A . 1334410
    38    2 A . 1334420
    39    1 A . 1334220
    40    0 A . 1332220
    41   -1 B . 1312220
    42    0 A . 1212220
    43   -1 A . 1222220
    44    0 A . 1422220
    45    1 A . 1442220
    46    2 A . 1444220
    47    3 A . 1444420
    48    4 A . 1444440
    49    5 B . 14444410
    50    4 A . 14444410
    51    3 A . 14444420
    52    2 A . 14444220
    53    1 A . 14442220
    54    0 A . 14422220
    55   -1 A . 14222220
    56   -2 A . 12222220
    57   -3 A .022222220
    58   -2 B .122222220
    59   -1 B .132222220
    60    0 B .133222220
    61    1 B .133322220
    62    2 B .133332220
    63    3 B .133333220
    64    4 B .133333320
    65    5 B .133333330
    66    4 A .133333330
    67    3 B .133333310
    68    4 A .133333210
    69    3 A .133333220
    70    4 A .133333420
    71    5 A .133333440
    72    6 B .1333334410
    73    5 A .1333334410
    74    4 A .1333334420
    75    3 A .1333334220
    76    2 A .1333332220
    77    1 B .1333312220
    78    2 A .1333212220
    79    1 A .1333222220
    80    2 A .1333422220
    81    3 A .1333442220
    82    4 A .1333444220
    83    5 A .1333444420
    84    6 A .1333444440
    85    7 B .13334444410
    86    6 A .13334444410
    87    5 A .13334444420
    88    4 A .13334444220
    89    3 A .13334442220
    90    2 A .13334422220
    91    1 A .13334222220
    92    0 A .13332222220
    93   -1 B .13312222220
    94    0 A .13212222220
    95   -1 A .13222222220
    96    0 A .13422222220
    97    1 A .13442222220
    98    2 A .13444222220
    99    3 A .13444422220
   100    4 A .13444442220
   101    5 A .13444444220
   102    6 A .13444444420
   103    7 A .13444444440
   104    8 B .134444444410
   105    7 A .134444444410
   106    6 A .134444444420
   107    5 A .134444444220
   108    4 A .134444442220
   109    3 A .134444422220
   110    2 A .134444222220
   111    1 A .134442222220
   112    0 A .134422222220
   113   -1 A .134222222220
   114   -2 A .132222222220
   115   -3 B .112222222220
   116   -2 B .212222222220
   117   -1 B .222222222220
   118    0 B .223222222220
   119    1 B .223322222220
   120    2 B .223332222220
   121    3 B .223333222220
   122    4 B .223333322220
   123    5 B .223333332220
   124    6 B .223333333220
   125    7 B .223333333320
   126    8 B .223333333330
   127    7 A .223333333330
   128    6 B .223333333310
   129    7 A .223333333210
   130    6 A .223333333220
   131    7 A .223333333420
   132    8 A .223333333440
   133    9 B .2233333334410
   134    8 A .2233333334410
   135    7 A .2233333334420
   136    6 A .2233333334220
   137    5 A .2233333332220
   138    4 B .2233333312220
   139    5 A .2233333212220
   140    4 A .2233333222220
   141    5 A .2233333422220
   142    6 A .2233333442220
   143    7 A .2233333444220
   144    8 A .2233333444420
   145    9 A .2233333444440
   146   10 B .22333334444410
   147    9 A .22333334444410
   148    8 A .22333334444420
   149    7 A .22333334444220
   150    6 A .22333334442220
   151    5 A .22333334422220
   152    4 A .22333334222220
   153    3 A .22333332222220
   154    2 B .22333312222220
   155    3 A .22333212222220
   156    2 A .22333222222220
   157    3 A .22333422222220
   158    4 A .22333442222220
   159    5 A .22333444222220
   160    6 A .22333444422220
   161    7 A .22333444442220
   162    8 A .22333444444220
   163    9 A .22333444444420
   164   10 A .22333444444440
   165   11 B .223334444444410
   166   10 A .223334444444410
   167    9 A .223334444444420
   168    8 A .223334444444220
   169    7 A .223334444442220
   170    6 A .223334444422220
   171    5 A .223334444222220
   172    4 A .223334442222220
   173    3 A .223334422222220
   174    2 A .223334222222220
   175    1 A .223332222222220
   176    0 B .223312222222220
   177    1 A .223212222222220
   178    0 A .223222222222220
   179    1 A .223422222222220
   180    2 A .223442222222220
   181    3 A .223444222222220
   182    4 A .223444422222220
   183    5 A .223444442222220
   184    6 A .223444444222220
   185    7 A .223444444422220
   186    8 A .223444444442220
   187    9 A .223444444444220
   188   10 A .223444444444420
   189   11 A .223444444444440
   190   12 B .2234444444444410
   191   11 A .2234444444444410
   192   10 A .2234444444444420
   193    9 A .2234444444444220
   194    8 A .2234444444442220
   195    7 A .2234444444422220
   196    6 A .2234444444222220
   197    5 A .2234444442222220
   198    4 A .2234444422222220
   199    3 A .2234444222222220
   200    2 A .2234442222222220

After 200 steps (201 lines): state = A.
Produced     15 nonzeros.
Tape index 2, scanned [-3 .. 12].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 149 15 22 52 11 49 0 2 10 6 14
B 51 17 4 21 9   1 7 4 31  
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:52 CEST 2010