Comment: This TM produces >9.3x10^30 nonzeros in >5.2x10^61 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | 1RB | 2LA | 4RA | 1LB | 2LA | 1 | right | B | 2 | left | A | 4 | right | A | 1 | left | B | 2 | left | A |
B | 0LA | 2RB | 3RB | 2RA | 1RH | 0 | left | A | 2 | right | B | 3 | right | B | 2 | right | A | 1 | right | H |
Simulation is done just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as 1-bck-macro machine. The same TM as 1-bck-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . 0 1 1 B . . 10 2 0 A . . 10 3 -1 A . .020 4 0 B . .120 5 1 B . .130 6 0 A . .130 7 -1 B . .110 8 0 B . .210 9 1 B . .220 10 0 A . .220 11 1 A . .240 12 2 B . .2410 13 1 A . .2410 14 0 A . .2420 15 -1 A . .2220 16 0 A . .4220 17 1 A . .4420 18 2 A . .4440 19 3 B . .44410 20 2 A . .44410 21 1 A . .44420 22 0 A . .44220 23 -1 A . .42220 24 -2 A . 022220 25 -1 B . 122220 26 0 B . 132220 27 1 B . 133220 28 2 B . 133320 29 3 B . 133330 30 2 A . 133330 31 1 B . 133310 32 2 A . 133210 33 1 A . 133220 34 2 A . 133420 35 3 A . 133440 36 4 B . 1334410 37 3 A . 1334410 38 2 A . 1334420 39 1 A . 1334220 40 0 A . 1332220 41 -1 B . 1312220 42 0 A . 1212220 43 -1 A . 1222220 44 0 A . 1422220 45 1 A . 1442220 46 2 A . 1444220 47 3 A . 1444420 48 4 A . 1444440 49 5 B . 14444410 50 4 A . 14444410 51 3 A . 14444420 52 2 A . 14444220 53 1 A . 14442220 54 0 A . 14422220 55 -1 A . 14222220 56 -2 A . 12222220 57 -3 A .022222220 58 -2 B .122222220 59 -1 B .132222220 60 0 B .133222220 61 1 B .133322220 62 2 B .133332220 63 3 B .133333220 64 4 B .133333320 65 5 B .133333330 66 4 A .133333330 67 3 B .133333310 68 4 A .133333210 69 3 A .133333220 70 4 A .133333420 71 5 A .133333440 72 6 B .1333334410 73 5 A .1333334410 74 4 A .1333334420 75 3 A .1333334220 76 2 A .1333332220 77 1 B .1333312220 78 2 A .1333212220 79 1 A .1333222220 80 2 A .1333422220 81 3 A .1333442220 82 4 A .1333444220 83 5 A .1333444420 84 6 A .1333444440 85 7 B .13334444410 86 6 A .13334444410 87 5 A .13334444420 88 4 A .13334444220 89 3 A .13334442220 90 2 A .13334422220 91 1 A .13334222220 92 0 A .13332222220 93 -1 B .13312222220 94 0 A .13212222220 95 -1 A .13222222220 96 0 A .13422222220 97 1 A .13442222220 98 2 A .13444222220 99 3 A .13444422220 100 4 A .13444442220 101 5 A .13444444220 102 6 A .13444444420 103 7 A .13444444440 104 8 B .134444444410 105 7 A .134444444410 106 6 A .134444444420 107 5 A .134444444220 108 4 A .134444442220 109 3 A .134444422220 110 2 A .134444222220 111 1 A .134442222220 112 0 A .134422222220 113 -1 A .134222222220 114 -2 A .132222222220 115 -3 B .112222222220 116 -2 B .212222222220 117 -1 B .222222222220 118 0 B .223222222220 119 1 B .223322222220 120 2 B .223332222220 121 3 B .223333222220 122 4 B .223333322220 123 5 B .223333332220 124 6 B .223333333220 125 7 B .223333333320 126 8 B .223333333330 127 7 A .223333333330 128 6 B .223333333310 129 7 A .223333333210 130 6 A .223333333220 131 7 A .223333333420 132 8 A .223333333440 133 9 B .2233333334410 134 8 A .2233333334410 135 7 A .2233333334420 136 6 A .2233333334220 137 5 A .2233333332220 138 4 B .2233333312220 139 5 A .2233333212220 140 4 A .2233333222220 141 5 A .2233333422220 142 6 A .2233333442220 143 7 A .2233333444220 144 8 A .2233333444420 145 9 A .2233333444440 146 10 B .22333334444410 147 9 A .22333334444410 148 8 A .22333334444420 149 7 A .22333334444220 150 6 A .22333334442220 151 5 A .22333334422220 152 4 A .22333334222220 153 3 A .22333332222220 154 2 B .22333312222220 155 3 A .22333212222220 156 2 A .22333222222220 157 3 A .22333422222220 158 4 A .22333442222220 159 5 A .22333444222220 160 6 A .22333444422220 161 7 A .22333444442220 162 8 A .22333444444220 163 9 A .22333444444420 164 10 A .22333444444440 165 11 B .223334444444410 166 10 A .223334444444410 167 9 A .223334444444420 168 8 A .223334444444220 169 7 A .223334444442220 170 6 A .223334444422220 171 5 A .223334444222220 172 4 A .223334442222220 173 3 A .223334422222220 174 2 A .223334222222220 175 1 A .223332222222220 176 0 B .223312222222220 177 1 A .223212222222220 178 0 A .223222222222220 179 1 A .223422222222220 180 2 A .223442222222220 181 3 A .223444222222220 182 4 A .223444422222220 183 5 A .223444442222220 184 6 A .223444444222220 185 7 A .223444444422220 186 8 A .223444444442220 187 9 A .223444444444220 188 10 A .223444444444420 189 11 A .223444444444440 190 12 B .2234444444444410 191 11 A .2234444444444410 192 10 A .2234444444444420 193 9 A .2234444444444220 194 8 A .2234444444442220 195 7 A .2234444444422220 196 6 A .2234444444222220 197 5 A .2234444442222220 198 4 A .2234444422222220 199 3 A .2234444222222220 200 2 A .2234442222222220 After 200 steps (201 lines): state = A. Produced 15 nonzeros. Tape index 2, scanned [-3 .. 12].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 149 | 15 | 22 | 52 | 11 | 49 | 0 | 2 | 10 | 6 | 14 |
B | 51 | 17 | 4 | 21 | 9 | 1 | 7 | 4 | 31 |