2-state 5-symbol #k from T.J. & S. Ligocki

Comment: This TM produces >9.3x10^30 nonzeros in >5.2x10^61 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 2LA 4RA 1LB 2LA 1 right B 2 left A 4 right A 1 left B 2 left A
B 0LA 2RB 3RB 2RA 1RH 0 left A 2 right B 3 right B 2 right A 1 right H
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     0  1 <A
     3    -1  <A 2
     4     0  1 B> 2
     5     1  1 3 B>
     6     0  1 3 <A
     7    -1  1 <B 1
     8     0  2 B> 1
     9     1  2 2 B>
    10     0  2 2 <A
    11     1  2 4 A>
    12     2  2 4 1 B>
    13     1  2 4 1 <A
    14     0  2 4 <A 2
    15    -1  2 <A 2 2
    16     0  4 A> 2 2
+   18     2  43 A>
    19     3  43 1 B>
    20     2  43 1 <A
    21     1  43 <A 2
+   24    -2  <A 24
    25    -1  1 B> 24
+   29     3  1 34 B>
    30     2  1 34 <A
    31     1  1 33 <B 1
    32     2  1 3 3 2 A> 1
    33     1  1 3 3 2 <A 2
    34     2  1 3 3 4 A> 2
    35     3  1 3 3 4 4 A>
    36     4  1 3 3 4 4 1 B>
    37     3  1 3 3 4 4 1 <A
    38     2  1 3 3 4 4 <A 2
+   40     0  1 3 3 <A 23
    41    -1  1 3 <B 1 23
    42     0  1 2 A> 1 23
    43    -1  1 2 <A 24
    44     0  1 4 A> 24
+   48     4  1 45 A>
    49     5  1 45 1 B>
    50     4  1 45 1 <A
    51     3  1 45 <A 2
+   56    -2  1 <A 26
    57    -3  <A 27
    58    -2  1 B> 27
+   65     5  1 37 B>
    66     4  1 37 <A
    67     3  1 36 <B 1
    68     4  1 35 2 A> 1
    69     3  1 35 2 <A 2
    70     4  1 35 4 A> 2
    71     5  1 35 4 4 A>
    72     6  1 35 4 4 1 B>
    73     5  1 35 4 4 1 <A
    74     4  1 35 4 4 <A 2
+   76     2  1 35 <A 23
    77     1  1 34 <B 1 23
    78     2  1 33 2 A> 1 23
    79     1  1 33 2 <A 24
    80     2  1 33 4 A> 24
+   84     6  1 33 45 A>
    85     7  1 33 45 1 B>
    86     6  1 33 45 1 <A
    87     5  1 33 45 <A 2
+   92     0  1 33 <A 26
    93    -1  1 3 3 <B 1 26
    94     0  1 3 2 A> 1 26
    95    -1  1 3 2 <A 27
    96     0  1 3 4 A> 27
+  103     7  1 3 48 A>
   104     8  1 3 48 1 B>
   105     7  1 3 48 1 <A
   106     6  1 3 48 <A 2
+  114    -2  1 3 <A 29
   115    -3  1 <B 1 29
   116    -2  2 B> 1 29
   117    -1  2 2 B> 29
+  126     8  2 2 39 B>
   127     7  2 2 39 <A
   128     6  2 2 38 <B 1
   129     7  2 2 37 2 A> 1
   130     6  2 2 37 2 <A 2
   131     7  2 2 37 4 A> 2
   132     8  2 2 37 4 4 A>
   133     9  2 2 37 4 4 1 B>
   134     8  2 2 37 4 4 1 <A
   135     7  2 2 37 4 4 <A 2
+  137     5  2 2 37 <A 23
   138     4  2 2 36 <B 1 23
   139     5  2 2 35 2 A> 1 23
   140     4  2 2 35 2 <A 24
   141     5  2 2 35 4 A> 24
+  145     9  2 2 35 45 A>
   146    10  2 2 35 45 1 B>
   147     9  2 2 35 45 1 <A
   148     8  2 2 35 45 <A 2
+  153     3  2 2 35 <A 26
   154     2  2 2 34 <B 1 26
   155     3  2 2 33 2 A> 1 26
   156     2  2 2 33 2 <A 27
   157     3  2 2 33 4 A> 27
+  164    10  2 2 33 48 A>
   165    11  2 2 33 48 1 B>
   166    10  2 2 33 48 1 <A
   167     9  2 2 33 48 <A 2
+  175     1  2 2 33 <A 29
   176     0  2 2 3 3 <B 1 29
   177     1  2 2 3 2 A> 1 29
   178     0  2 2 3 2 <A 210
   179     1  2 2 3 4 A> 210
+  189    11  2 2 3 411 A>
   190    12  2 2 3 411 1 B>
   191    11  2 2 3 411 1 <A
   192    10  2 2 3 411 <A 2
+  203    -1  2 2 3 <A 212
   204    -2  2 2 <B 1 212
   205    -1  2 3 B> 1 212
   206     0  2 3 2 B> 212
+  218    12  2 3 2 312 B>
   219    11  2 3 2 312 <A
   220    10  2 3 2 311 <B 1
   221    11  2 3 2 310 2 A> 1
   222    10  2 3 2 310 2 <A 2
   223    11  2 3 2 310 4 A> 2
   224    12  2 3 2 310 4 4 A>
   225    13  2 3 2 310 4 4 1 B>
   226    12  2 3 2 310 4 4 1 <A
   227    11  2 3 2 310 4 4 <A 2
+  229     9  2 3 2 310 <A 23
   230     8  2 3 2 39 <B 1 23
   231     9  2 3 2 38 2 A> 1 23
   232     8  2 3 2 38 2 <A 24
   233     9  2 3 2 38 4 A> 24
+  237    13  2 3 2 38 45 A>
   238    14  2 3 2 38 45 1 B>
   239    13  2 3 2 38 45 1 <A
   240    12  2 3 2 38 45 <A 2
+  245     7  2 3 2 38 <A 26
   246     6  2 3 2 37 <B 1 26
   247     7  2 3 2 36 2 A> 1 26
   248     6  2 3 2 36 2 <A 27
   249     7  2 3 2 36 4 A> 27
+  256    14  2 3 2 36 48 A>
   257    15  2 3 2 36 48 1 B>
   258    14  2 3 2 36 48 1 <A
   259    13  2 3 2 36 48 <A 2
+  267     5  2 3 2 36 <A 29
   268     4  2 3 2 35 <B 1 29
   269     5  2 3 2 34 2 A> 1 29
   270     4  2 3 2 34 2 <A 210
   271     5  2 3 2 34 4 A> 210
+  281    15  2 3 2 34 411 A>
   282    16  2 3 2 34 411 1 B>
   283    15  2 3 2 34 411 1 <A
   284    14  2 3 2 34 411 <A 2
+  295     3  2 3 2 34 <A 212
   296     2  2 3 2 33 <B 1 212
   297     3  2 3 2 3 3 2 A> 1 212
   298     2  2 3 2 3 3 2 <A 213
   299     3  2 3 2 3 3 4 A> 213
+  312    16  2 3 2 3 3 414 A>
   313    17  2 3 2 3 3 414 1 B>
   314    16  2 3 2 3 3 414 1 <A
   315    15  2 3 2 3 3 414 <A 2
+  329     1  2 3 2 3 3 <A 215
   330     0  2 3 2 3 <B 1 215
   331     1  2 3 2 2 A> 1 215
   332     0  2 3 2 2 <A 216
   333     1  2 3 2 4 A> 216
+  349    17  2 3 2 417 A>
   350    18  2 3 2 417 1 B>
   351    17  2 3 2 417 1 <A
   352    16  2 3 2 417 <A 2
+  369    -1  2 3 2 <A 218
   370     0  2 3 4 A> 218
+  388    18  2 3 419 A>
   389    19  2 3 419 1 B>
   390    18  2 3 419 1 <A
   391    17  2 3 419 <A 2
+  410    -2  2 3 <A 220
   411    -3  2 <B 1 220
   412    -2  3 B> 1 220
   413    -1  3 2 B> 220
+  433    19  3 2 320 B>
   434    18  3 2 320 <A
   435    17  3 2 319 <B 1
   436    18  3 2 318 2 A> 1
   437    17  3 2 318 2 <A 2
   438    18  3 2 318 4 A> 2
   439    19  3 2 318 4 4 A>
   440    20  3 2 318 4 4 1 B>
   441    19  3 2 318 4 4 1 <A
   442    18  3 2 318 4 4 <A 2
+  444    16  3 2 318 <A 23
   445    15  3 2 317 <B 1 23
   446    16  3 2 316 2 A> 1 23
   447    15  3 2 316 2 <A 24
   448    16  3 2 316 4 A> 24
+  452    20  3 2 316 45 A>
   453    21  3 2 316 45 1 B>
   454    20  3 2 316 45 1 <A

After 454 steps (201 lines): state = A.
Produced     24 nonzeros.
Tape index 20, scanned [-3 .. 21].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 348 24 38 135 21 130 0 2 10 6 14
B 106 28 6 55 17   1 7 4 31  
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:52 CEST 2010