Comment: This TM produces >9.3x10^30 nonzeros in >5.2x10^61 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | 1RB | 2LA | 4RA | 1LB | 2LA | 1 | right | B | 2 | left | A | 4 | right | A | 1 | left | B | 2 | left | A |
B | 0LA | 2RB | 3RB | 2RA | 1RH | 0 | left | A | 2 | right | B | 3 | right | B | 2 | right | A | 1 | right | H |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-bck-macro machine. The same TM as 1-bck-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 3 -1 <A 2 4 0 1 B> 2 5 1 1 3 B> 6 0 1 3 <A 7 -1 1 <B 1 8 0 2 B> 1 9 1 2 2 B> 10 0 2 2 <A 11 1 2 4 A> 12 2 2 4 1 B> 13 1 2 4 1 <A 14 0 2 4 <A 2 15 -1 2 <A 2 2 16 0 4 A> 2 2 + 18 2 43 A> 19 3 43 1 B> 20 2 43 1 <A 21 1 43 <A 2 + 24 -2 <A 24 25 -1 1 B> 24 + 29 3 1 34 B> 30 2 1 34 <A 31 1 1 33 <B 1 32 2 1 3 3 2 A> 1 33 1 1 3 3 2 <A 2 34 2 1 3 3 4 A> 2 35 3 1 3 3 4 4 A> 36 4 1 3 3 4 4 1 B> 37 3 1 3 3 4 4 1 <A 38 2 1 3 3 4 4 <A 2 + 40 0 1 3 3 <A 23 41 -1 1 3 <B 1 23 42 0 1 2 A> 1 23 43 -1 1 2 <A 24 44 0 1 4 A> 24 + 48 4 1 45 A> 49 5 1 45 1 B> 50 4 1 45 1 <A 51 3 1 45 <A 2 + 56 -2 1 <A 26 57 -3 <A 27 58 -2 1 B> 27 + 65 5 1 37 B> 66 4 1 37 <A 67 3 1 36 <B 1 68 4 1 35 2 A> 1 69 3 1 35 2 <A 2 70 4 1 35 4 A> 2 71 5 1 35 4 4 A> 72 6 1 35 4 4 1 B> 73 5 1 35 4 4 1 <A 74 4 1 35 4 4 <A 2 + 76 2 1 35 <A 23 77 1 1 34 <B 1 23 78 2 1 33 2 A> 1 23 79 1 1 33 2 <A 24 80 2 1 33 4 A> 24 + 84 6 1 33 45 A> 85 7 1 33 45 1 B> 86 6 1 33 45 1 <A 87 5 1 33 45 <A 2 + 92 0 1 33 <A 26 93 -1 1 3 3 <B 1 26 94 0 1 3 2 A> 1 26 95 -1 1 3 2 <A 27 96 0 1 3 4 A> 27 + 103 7 1 3 48 A> 104 8 1 3 48 1 B> 105 7 1 3 48 1 <A 106 6 1 3 48 <A 2 + 114 -2 1 3 <A 29 115 -3 1 <B 1 29 116 -2 2 B> 1 29 117 -1 2 2 B> 29 + 126 8 2 2 39 B> 127 7 2 2 39 <A 128 6 2 2 38 <B 1 129 7 2 2 37 2 A> 1 130 6 2 2 37 2 <A 2 131 7 2 2 37 4 A> 2 132 8 2 2 37 4 4 A> 133 9 2 2 37 4 4 1 B> 134 8 2 2 37 4 4 1 <A 135 7 2 2 37 4 4 <A 2 + 137 5 2 2 37 <A 23 138 4 2 2 36 <B 1 23 139 5 2 2 35 2 A> 1 23 140 4 2 2 35 2 <A 24 141 5 2 2 35 4 A> 24 + 145 9 2 2 35 45 A> 146 10 2 2 35 45 1 B> 147 9 2 2 35 45 1 <A 148 8 2 2 35 45 <A 2 + 153 3 2 2 35 <A 26 154 2 2 2 34 <B 1 26 155 3 2 2 33 2 A> 1 26 156 2 2 2 33 2 <A 27 157 3 2 2 33 4 A> 27 + 164 10 2 2 33 48 A> 165 11 2 2 33 48 1 B> 166 10 2 2 33 48 1 <A 167 9 2 2 33 48 <A 2 + 175 1 2 2 33 <A 29 176 0 2 2 3 3 <B 1 29 177 1 2 2 3 2 A> 1 29 178 0 2 2 3 2 <A 210 179 1 2 2 3 4 A> 210 + 189 11 2 2 3 411 A> 190 12 2 2 3 411 1 B> 191 11 2 2 3 411 1 <A 192 10 2 2 3 411 <A 2 + 203 -1 2 2 3 <A 212 204 -2 2 2 <B 1 212 205 -1 2 3 B> 1 212 206 0 2 3 2 B> 212 + 218 12 2 3 2 312 B> 219 11 2 3 2 312 <A 220 10 2 3 2 311 <B 1 221 11 2 3 2 310 2 A> 1 222 10 2 3 2 310 2 <A 2 223 11 2 3 2 310 4 A> 2 224 12 2 3 2 310 4 4 A> 225 13 2 3 2 310 4 4 1 B> 226 12 2 3 2 310 4 4 1 <A 227 11 2 3 2 310 4 4 <A 2 + 229 9 2 3 2 310 <A 23 230 8 2 3 2 39 <B 1 23 231 9 2 3 2 38 2 A> 1 23 232 8 2 3 2 38 2 <A 24 233 9 2 3 2 38 4 A> 24 + 237 13 2 3 2 38 45 A> 238 14 2 3 2 38 45 1 B> 239 13 2 3 2 38 45 1 <A 240 12 2 3 2 38 45 <A 2 + 245 7 2 3 2 38 <A 26 246 6 2 3 2 37 <B 1 26 247 7 2 3 2 36 2 A> 1 26 248 6 2 3 2 36 2 <A 27 249 7 2 3 2 36 4 A> 27 + 256 14 2 3 2 36 48 A> 257 15 2 3 2 36 48 1 B> 258 14 2 3 2 36 48 1 <A 259 13 2 3 2 36 48 <A 2 + 267 5 2 3 2 36 <A 29 268 4 2 3 2 35 <B 1 29 269 5 2 3 2 34 2 A> 1 29 270 4 2 3 2 34 2 <A 210 271 5 2 3 2 34 4 A> 210 + 281 15 2 3 2 34 411 A> 282 16 2 3 2 34 411 1 B> 283 15 2 3 2 34 411 1 <A 284 14 2 3 2 34 411 <A 2 + 295 3 2 3 2 34 <A 212 296 2 2 3 2 33 <B 1 212 297 3 2 3 2 3 3 2 A> 1 212 298 2 2 3 2 3 3 2 <A 213 299 3 2 3 2 3 3 4 A> 213 + 312 16 2 3 2 3 3 414 A> 313 17 2 3 2 3 3 414 1 B> 314 16 2 3 2 3 3 414 1 <A 315 15 2 3 2 3 3 414 <A 2 + 329 1 2 3 2 3 3 <A 215 330 0 2 3 2 3 <B 1 215 331 1 2 3 2 2 A> 1 215 332 0 2 3 2 2 <A 216 333 1 2 3 2 4 A> 216 + 349 17 2 3 2 417 A> 350 18 2 3 2 417 1 B> 351 17 2 3 2 417 1 <A 352 16 2 3 2 417 <A 2 + 369 -1 2 3 2 <A 218 370 0 2 3 4 A> 218 + 388 18 2 3 419 A> 389 19 2 3 419 1 B> 390 18 2 3 419 1 <A 391 17 2 3 419 <A 2 + 410 -2 2 3 <A 220 411 -3 2 <B 1 220 412 -2 3 B> 1 220 413 -1 3 2 B> 220 + 433 19 3 2 320 B> 434 18 3 2 320 <A 435 17 3 2 319 <B 1 436 18 3 2 318 2 A> 1 437 17 3 2 318 2 <A 2 438 18 3 2 318 4 A> 2 439 19 3 2 318 4 4 A> 440 20 3 2 318 4 4 1 B> 441 19 3 2 318 4 4 1 <A 442 18 3 2 318 4 4 <A 2 + 444 16 3 2 318 <A 23 445 15 3 2 317 <B 1 23 446 16 3 2 316 2 A> 1 23 447 15 3 2 316 2 <A 24 448 16 3 2 316 4 A> 24 + 452 20 3 2 316 45 A> 453 21 3 2 316 45 1 B> 454 20 3 2 316 45 1 <A After 454 steps (201 lines): state = A. Produced 24 nonzeros. Tape index 20, scanned [-3 .. 21].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 348 | 24 | 38 | 135 | 21 | 130 | 0 | 2 | 10 | 6 | 14 |
B | 106 | 28 | 6 | 55 | 17 | 1 | 7 | 4 | 31 |