Comment: This TM produces >9.3x10^30 nonzeros in >5.2x10^61 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | 1RB | 2LA | 4RA | 1LB | 2LA | 1 | right | B | 2 | left | A | 4 | right | A | 1 | left | B | 2 | left | A |
| B | 0LA | 2RB | 3RB | 2RA | 1RH | 0 | left | A | 2 | right | B | 3 | right | B | 2 | right | A | 1 | right | H |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A
3 -1 <A 2
4 0 1 B> 2
5 1 1 3 B>
6 0 1 3 <A
7 -1 1 <B 1
8 0 2 B> 1
9 1 2 2 B>
10 0 2 2 <A
11 1 2 4 A>
12 2 2 4 1 B>
13 1 2 4 1 <A
14 0 2 4 <A 2
15 -1 2 <A 2 2
16 0 4 A> 2 2
+ 18 2 43 A>
19 3 43 1 B>
20 2 43 1 <A
21 1 43 <A 2
+ 24 -2 <A 24
25 -1 1 B> 24
+ 29 3 1 34 B>
30 2 1 34 <A
31 1 1 33 <B 1
32 2 1 3 3 2 A> 1
33 1 1 3 3 2 <A 2
34 2 1 3 3 4 A> 2
35 3 1 3 3 4 4 A>
36 4 1 3 3 4 4 1 B>
37 3 1 3 3 4 4 1 <A
38 2 1 3 3 4 4 <A 2
+ 40 0 1 3 3 <A 23
41 -1 1 3 <B 1 23
42 0 1 2 A> 1 23
43 -1 1 2 <A 24
44 0 1 4 A> 24
+ 48 4 1 45 A>
49 5 1 45 1 B>
50 4 1 45 1 <A
51 3 1 45 <A 2
+ 56 -2 1 <A 26
57 -3 <A 27
58 -2 1 B> 27
+ 65 5 1 37 B>
66 4 1 37 <A
67 3 1 36 <B 1
68 4 1 35 2 A> 1
69 3 1 35 2 <A 2
70 4 1 35 4 A> 2
71 5 1 35 4 4 A>
72 6 1 35 4 4 1 B>
73 5 1 35 4 4 1 <A
74 4 1 35 4 4 <A 2
+ 76 2 1 35 <A 23
77 1 1 34 <B 1 23
78 2 1 33 2 A> 1 23
79 1 1 33 2 <A 24
80 2 1 33 4 A> 24
+ 84 6 1 33 45 A>
85 7 1 33 45 1 B>
86 6 1 33 45 1 <A
87 5 1 33 45 <A 2
+ 92 0 1 33 <A 26
93 -1 1 3 3 <B 1 26
94 0 1 3 2 A> 1 26
95 -1 1 3 2 <A 27
96 0 1 3 4 A> 27
+ 103 7 1 3 48 A>
104 8 1 3 48 1 B>
105 7 1 3 48 1 <A
106 6 1 3 48 <A 2
+ 114 -2 1 3 <A 29
115 -3 1 <B 1 29
116 -2 2 B> 1 29
117 -1 2 2 B> 29
+ 126 8 2 2 39 B>
127 7 2 2 39 <A
128 6 2 2 38 <B 1
129 7 2 2 37 2 A> 1
130 6 2 2 37 2 <A 2
131 7 2 2 37 4 A> 2
132 8 2 2 37 4 4 A>
133 9 2 2 37 4 4 1 B>
134 8 2 2 37 4 4 1 <A
135 7 2 2 37 4 4 <A 2
+ 137 5 2 2 37 <A 23
138 4 2 2 36 <B 1 23
139 5 2 2 35 2 A> 1 23
140 4 2 2 35 2 <A 24
141 5 2 2 35 4 A> 24
+ 145 9 2 2 35 45 A>
146 10 2 2 35 45 1 B>
147 9 2 2 35 45 1 <A
148 8 2 2 35 45 <A 2
+ 153 3 2 2 35 <A 26
154 2 2 2 34 <B 1 26
155 3 2 2 33 2 A> 1 26
156 2 2 2 33 2 <A 27
157 3 2 2 33 4 A> 27
+ 164 10 2 2 33 48 A>
165 11 2 2 33 48 1 B>
166 10 2 2 33 48 1 <A
167 9 2 2 33 48 <A 2
+ 175 1 2 2 33 <A 29
176 0 2 2 3 3 <B 1 29
177 1 2 2 3 2 A> 1 29
178 0 2 2 3 2 <A 210
179 1 2 2 3 4 A> 210
+ 189 11 2 2 3 411 A>
190 12 2 2 3 411 1 B>
191 11 2 2 3 411 1 <A
192 10 2 2 3 411 <A 2
+ 203 -1 2 2 3 <A 212
204 -2 2 2 <B 1 212
205 -1 2 3 B> 1 212
206 0 2 3 2 B> 212
+ 218 12 2 3 2 312 B>
219 11 2 3 2 312 <A
220 10 2 3 2 311 <B 1
221 11 2 3 2 310 2 A> 1
222 10 2 3 2 310 2 <A 2
223 11 2 3 2 310 4 A> 2
224 12 2 3 2 310 4 4 A>
225 13 2 3 2 310 4 4 1 B>
226 12 2 3 2 310 4 4 1 <A
227 11 2 3 2 310 4 4 <A 2
+ 229 9 2 3 2 310 <A 23
230 8 2 3 2 39 <B 1 23
231 9 2 3 2 38 2 A> 1 23
232 8 2 3 2 38 2 <A 24
233 9 2 3 2 38 4 A> 24
+ 237 13 2 3 2 38 45 A>
238 14 2 3 2 38 45 1 B>
239 13 2 3 2 38 45 1 <A
240 12 2 3 2 38 45 <A 2
+ 245 7 2 3 2 38 <A 26
246 6 2 3 2 37 <B 1 26
247 7 2 3 2 36 2 A> 1 26
248 6 2 3 2 36 2 <A 27
249 7 2 3 2 36 4 A> 27
+ 256 14 2 3 2 36 48 A>
257 15 2 3 2 36 48 1 B>
258 14 2 3 2 36 48 1 <A
259 13 2 3 2 36 48 <A 2
+ 267 5 2 3 2 36 <A 29
268 4 2 3 2 35 <B 1 29
269 5 2 3 2 34 2 A> 1 29
270 4 2 3 2 34 2 <A 210
271 5 2 3 2 34 4 A> 210
+ 281 15 2 3 2 34 411 A>
282 16 2 3 2 34 411 1 B>
283 15 2 3 2 34 411 1 <A
284 14 2 3 2 34 411 <A 2
+ 295 3 2 3 2 34 <A 212
296 2 2 3 2 33 <B 1 212
297 3 2 3 2 3 3 2 A> 1 212
298 2 2 3 2 3 3 2 <A 213
299 3 2 3 2 3 3 4 A> 213
+ 312 16 2 3 2 3 3 414 A>
313 17 2 3 2 3 3 414 1 B>
314 16 2 3 2 3 3 414 1 <A
315 15 2 3 2 3 3 414 <A 2
+ 329 1 2 3 2 3 3 <A 215
330 0 2 3 2 3 <B 1 215
331 1 2 3 2 2 A> 1 215
332 0 2 3 2 2 <A 216
333 1 2 3 2 4 A> 216
+ 349 17 2 3 2 417 A>
350 18 2 3 2 417 1 B>
351 17 2 3 2 417 1 <A
352 16 2 3 2 417 <A 2
+ 369 -1 2 3 2 <A 218
370 0 2 3 4 A> 218
+ 388 18 2 3 419 A>
389 19 2 3 419 1 B>
390 18 2 3 419 1 <A
391 17 2 3 419 <A 2
+ 410 -2 2 3 <A 220
411 -3 2 <B 1 220
412 -2 3 B> 1 220
413 -1 3 2 B> 220
+ 433 19 3 2 320 B>
434 18 3 2 320 <A
435 17 3 2 319 <B 1
436 18 3 2 318 2 A> 1
437 17 3 2 318 2 <A 2
438 18 3 2 318 4 A> 2
439 19 3 2 318 4 4 A>
440 20 3 2 318 4 4 1 B>
441 19 3 2 318 4 4 1 <A
442 18 3 2 318 4 4 <A 2
+ 444 16 3 2 318 <A 23
445 15 3 2 317 <B 1 23
446 16 3 2 316 2 A> 1 23
447 15 3 2 316 2 <A 24
448 16 3 2 316 4 A> 24
+ 452 20 3 2 316 45 A>
453 21 3 2 316 45 1 B>
454 20 3 2 316 45 1 <A
After 454 steps (201 lines): state = A.
Produced 24 nonzeros.
Tape index 20, scanned [-3 .. 21].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 348 | 24 | 38 | 135 | 21 | 130 | 0 | 2 | 10 | 6 | 14 |
| B | 106 | 28 | 6 | 55 | 17 | 1 | 7 | 4 | 31 | ||