2-state 5-symbol #j from T.J. & S. Ligocki

Comment: This TM produces 172,312,766,455 nonzeros in 7,069,449,877,176,007,352,687 steps.

State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 0RB 4RA 2LB 2LA 1 right B 0 right B 4 right A 2 left B 2 left A
B 2LA 1LB 3RB 4RA 1RH 2 left A 1 left B 3 right B 4 right A 1 right H
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing macro factor 1.

Steps BasSteps BasTpos  Tape contents
    0        0       0  A>
    1        1       1  1 B>
    2        2       0  1 <A 2
    3        3       1  B> 2
    4        4       2  3 B>
    5        5       1  3 <A 2
    6        6       0  <B 22
    7        7      -1  <A 23
    8        8       0  1 B> 23
    9       11       3  1 33 B>
   10       12       2  1 33 <A 2
   11       13       1  1 32 <B 22
   12       14       2  1 3 4 A> 22
   13       16       4  1 3 43 A>
   14       17       5  1 3 43 1 B>
   15       18       4  1 3 43 1 <A 2
   16       19       5  1 3 43 0 B> 2
   17       20       6  1 3 43 0 3 B>
   18       21       5  1 3 43 0 3 <A 2
   19       22       4  1 3 43 0 <B 22
   20       23       3  1 3 43 <A 23
   21       26       0  1 3 <A 26
   22       27      -1  1 <B 27
   23       28      -2  <B 1 27
   24       29      -3  <A 2 1 27
   25       30      -2  1 B> 2 1 27
   26       31      -1  1 3 B> 1 27
   27       32      -2  1 3 <B 1 27
   28       33      -1  1 4 A> 1 27
   29       34       0  1 4 0 B> 27
   30       41       7  1 4 0 37 B>
   31       42       6  1 4 0 37 <A 2
   32       43       5  1 4 0 36 <B 22
   33       44       6  1 4 0 35 4 A> 22
   34       46       8  1 4 0 35 43 A>
   35       47       9  1 4 0 35 43 1 B>
   36       48       8  1 4 0 35 43 1 <A 2
   37       49       9  1 4 0 35 43 0 B> 2
   38       50      10  1 4 0 35 43 0 3 B>
   39       51       9  1 4 0 35 43 0 3 <A 2
   40       52       8  1 4 0 35 43 0 <B 22
   41       53       7  1 4 0 35 43 <A 23
   42       56       4  1 4 0 35 <A 26
   43       57       3  1 4 0 34 <B 27
   44       58       4  1 4 0 33 4 A> 27
   45       65      11  1 4 0 33 48 A>
   46       66      12  1 4 0 33 48 1 B>
   47       67      11  1 4 0 33 48 1 <A 2
   48       68      12  1 4 0 33 48 0 B> 2
   49       69      13  1 4 0 33 48 0 3 B>
   50       70      12  1 4 0 33 48 0 3 <A 2
   51       71      11  1 4 0 33 48 0 <B 22
   52       72      10  1 4 0 33 48 <A 23
   53       80       2  1 4 0 33 <A 211
   54       81       1  1 4 0 32 <B 212
   55       82       2  1 4 0 3 4 A> 212
   56       94      14  1 4 0 3 413 A>
   57       95      15  1 4 0 3 413 1 B>
   58       96      14  1 4 0 3 413 1 <A 2
   59       97      15  1 4 0 3 413 0 B> 2
   60       98      16  1 4 0 3 413 0 3 B>
   61       99      15  1 4 0 3 413 0 3 <A 2
   62      100      14  1 4 0 3 413 0 <B 22
   63      101      13  1 4 0 3 413 <A 23
   64      114       0  1 4 0 3 <A 216
   65      115      -1  1 4 0 <B 217
   66      116      -2  1 4 <A 218
   67      117      -3  1 <A 219
   68      118      -2  B> 219
   69      137      17  319 B>
   70      138      16  319 <A 2
   71      139      15  318 <B 22
   72      140      16  317 4 A> 22
   73      142      18  317 43 A>
   74      143      19  317 43 1 B>
   75      144      18  317 43 1 <A 2
   76      145      19  317 43 0 B> 2
   77      146      20  317 43 0 3 B>
   78      147      19  317 43 0 3 <A 2
   79      148      18  317 43 0 <B 22
   80      149      17  317 43 <A 23
   81      152      14  317 <A 26
   82      153      13  316 <B 27
   83      154      14  315 4 A> 27
   84      161      21  315 48 A>
   85      162      22  315 48 1 B>
   86      163      21  315 48 1 <A 2
   87      164      22  315 48 0 B> 2
   88      165      23  315 48 0 3 B>
   89      166      22  315 48 0 3 <A 2
   90      167      21  315 48 0 <B 22
   91      168      20  315 48 <A 23
   92      176      12  315 <A 211
   93      177      11  314 <B 212
   94      178      12  313 4 A> 212
   95      190      24  313 413 A>
   96      191      25  313 413 1 B>
   97      192      24  313 413 1 <A 2
   98      193      25  313 413 0 B> 2
   99      194      26  313 413 0 3 B>
  100      195      25  313 413 0 3 <A 2
  101      196      24  313 413 0 <B 22
  102      197      23  313 413 <A 23
  103      210      10  313 <A 216
  104      211       9  312 <B 217
  105      212      10  311 4 A> 217
  106      229      27  311 418 A>
  107      230      28  311 418 1 B>
  108      231      27  311 418 1 <A 2
  109      232      28  311 418 0 B> 2
  110      233      29  311 418 0 3 B>
  111      234      28  311 418 0 3 <A 2
  112      235      27  311 418 0 <B 22
  113      236      26  311 418 <A 23
  114      254       8  311 <A 221
  115      255       7  310 <B 222
  116      256       8  39 4 A> 222
  117      278      30  39 423 A>
  118      279      31  39 423 1 B>
  119      280      30  39 423 1 <A 2
  120      281      31  39 423 0 B> 2
  121      282      32  39 423 0 3 B>
  122      283      31  39 423 0 3 <A 2
  123      284      30  39 423 0 <B 22
  124      285      29  39 423 <A 23
  125      308       6  39 <A 226
  126      309       5  38 <B 227
  127      310       6  37 4 A> 227
  128      337      33  37 428 A>
  129      338      34  37 428 1 B>
  130      339      33  37 428 1 <A 2
  131      340      34  37 428 0 B> 2
  132      341      35  37 428 0 3 B>
  133      342      34  37 428 0 3 <A 2
  134      343      33  37 428 0 <B 22
  135      344      32  37 428 <A 23
  136      372       4  37 <A 231
  137      373       3  36 <B 232
  138      374       4  35 4 A> 232
  139      406      36  35 433 A>
  140      407      37  35 433 1 B>
  141      408      36  35 433 1 <A 2
  142      409      37  35 433 0 B> 2
  143      410      38  35 433 0 3 B>
  144      411      37  35 433 0 3 <A 2
  145      412      36  35 433 0 <B 22
  146      413      35  35 433 <A 23
  147      446       2  35 <A 236
  148      447       1  34 <B 237
  149      448       2  33 4 A> 237
  150      485      39  33 438 A>
  151      486      40  33 438 1 B>
  152      487      39  33 438 1 <A 2
  153      488      40  33 438 0 B> 2
  154      489      41  33 438 0 3 B>
  155      490      40  33 438 0 3 <A 2
  156      491      39  33 438 0 <B 22
  157      492      38  33 438 <A 23
  158      530       0  33 <A 241
  159      531      -1  32 <B 242
  160      532       0  3 4 A> 242
  161      574      42  3 443 A>
  162      575      43  3 443 1 B>
  163      576      42  3 443 1 <A 2
  164      577      43  3 443 0 B> 2
  165      578      44  3 443 0 3 B>
  166      579      43  3 443 0 3 <A 2
  167      580      42  3 443 0 <B 22
  168      581      41  3 443 <A 23
  169      624      -2  3 <A 246
  170      625      -3  <B 247
  171      626      -4  <A 248
  172      627      -3  1 B> 248
  173      675      45  1 348 B>
  174      676      44  1 348 <A 2
  175      677      43  1 347 <B 22
  176      678      44  1 346 4 A> 22
  177      680      46  1 346 43 A>
  178      681      47  1 346 43 1 B>
  179      682      46  1 346 43 1 <A 2
  180      683      47  1 346 43 0 B> 2
  181      684      48  1 346 43 0 3 B>
  182      685      47  1 346 43 0 3 <A 2
  183      686      46  1 346 43 0 <B 22
  184      687      45  1 346 43 <A 23
  185      690      42  1 346 <A 26
  186      691      41  1 345 <B 27
  187      692      42  1 344 4 A> 27
  188      699      49  1 344 48 A>
  189      700      50  1 344 48 1 B>
  190      701      49  1 344 48 1 <A 2
  191      702      50  1 344 48 0 B> 2
  192      703      51  1 344 48 0 3 B>
  193      704      50  1 344 48 0 3 <A 2
  194      705      49  1 344 48 0 <B 22
  195      706      48  1 344 48 <A 23
  196      714      40  1 344 <A 211
  197      715      39  1 343 <B 212
  198      716      40  1 342 4 A> 212
  199      728      52  1 342 413 A>
  200      729      53  1 342 413 1 B>

Lines:       201
Top steps:   200
Macro steps: 200
Basic steps: 729
Tape index:  53
nonzeros:    57
log10(nonzeros):    1.756
log10(steps   ):    2.863

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    nbs 5
    T 2-state 5-symbol #j from T.J. & S. Ligocki
    5T  1RB 0RB 4RA 2LB 2LA  2LA 1LB 3RB 4RA 1RH
    : 172,312,766,455  7,069,449,877,176,007,352,687
    L 6
    M	201
    pref	sim
    machv Lig25_j  	just simple
    machv Lig25_j-r	with repetitions reduced
    machv Lig25_j-1	with tape symbol exponents
    machv Lig25_j-m	as 1-macro machine
    machv Lig25_j-a	as 1-macro machine with pure additive config-TRs
    iam	Lig25_j-m
    mtype	1
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:12:51 CEST 2010
    edate	Tue Jul  6 22:12:51 CEST 2010
    bnspeed	1

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:12:51 CEST 2010
Ready: Tue Jul 6 22:12:51 CEST 2010