Comment: This TM produces 172,312,766,455 nonzeros in 7,069,449,877,176,007,352,687 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | 1RB | 0RB | 4RA | 2LB | 2LA | 1 | right | B | 0 | right | B | 4 | right | A | 2 | left | B | 2 | left | A |
B | 2LA | 1LB | 3RB | 4RA | 1RH | 2 | left | A | 1 | left | B | 3 | right | B | 4 | right | A | 1 | right | H |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 2 3 1 B> 2 4 2 3 B> 5 1 3 <A 2 6 0 <B 2 2 7 -1 <A 23 8 0 1 B> 23 + 11 3 1 33 B> 12 2 1 33 <A 2 13 1 1 3 3 <B 2 2 14 2 1 3 4 A> 2 2 + 16 4 1 3 43 A> 17 5 1 3 43 1 B> 18 4 1 3 43 1 <A 2 19 5 1 3 43 0 B> 2 20 6 1 3 43 0 3 B> 21 5 1 3 43 0 3 <A 2 22 4 1 3 43 0 <B 2 2 23 3 1 3 43 <A 23 + 26 0 1 3 <A 26 27 -1 1 <B 27 28 -2 <B 1 27 29 -3 <A 2 1 27 30 -2 1 B> 2 1 27 31 -1 1 3 B> 1 27 32 -2 1 3 <B 1 27 33 -1 1 4 A> 1 27 34 0 1 4 0 B> 27 + 41 7 1 4 0 37 B> 42 6 1 4 0 37 <A 2 43 5 1 4 0 36 <B 2 2 44 6 1 4 0 35 4 A> 2 2 + 46 8 1 4 0 35 43 A> 47 9 1 4 0 35 43 1 B> 48 8 1 4 0 35 43 1 <A 2 49 9 1 4 0 35 43 0 B> 2 50 10 1 4 0 35 43 0 3 B> 51 9 1 4 0 35 43 0 3 <A 2 52 8 1 4 0 35 43 0 <B 2 2 53 7 1 4 0 35 43 <A 23 + 56 4 1 4 0 35 <A 26 57 3 1 4 0 34 <B 27 58 4 1 4 0 33 4 A> 27 + 65 11 1 4 0 33 48 A> 66 12 1 4 0 33 48 1 B> 67 11 1 4 0 33 48 1 <A 2 68 12 1 4 0 33 48 0 B> 2 69 13 1 4 0 33 48 0 3 B> 70 12 1 4 0 33 48 0 3 <A 2 71 11 1 4 0 33 48 0 <B 2 2 72 10 1 4 0 33 48 <A 23 + 80 2 1 4 0 33 <A 211 81 1 1 4 0 3 3 <B 212 82 2 1 4 0 3 4 A> 212 + 94 14 1 4 0 3 413 A> 95 15 1 4 0 3 413 1 B> 96 14 1 4 0 3 413 1 <A 2 97 15 1 4 0 3 413 0 B> 2 98 16 1 4 0 3 413 0 3 B> 99 15 1 4 0 3 413 0 3 <A 2 100 14 1 4 0 3 413 0 <B 2 2 101 13 1 4 0 3 413 <A 23 + 114 0 1 4 0 3 <A 216 115 -1 1 4 0 <B 217 116 -2 1 4 <A 218 117 -3 1 <A 219 118 -2 B> 219 + 137 17 319 B> 138 16 319 <A 2 139 15 318 <B 2 2 140 16 317 4 A> 2 2 + 142 18 317 43 A> 143 19 317 43 1 B> 144 18 317 43 1 <A 2 145 19 317 43 0 B> 2 146 20 317 43 0 3 B> 147 19 317 43 0 3 <A 2 148 18 317 43 0 <B 2 2 149 17 317 43 <A 23 + 152 14 317 <A 26 153 13 316 <B 27 154 14 315 4 A> 27 + 161 21 315 48 A> 162 22 315 48 1 B> 163 21 315 48 1 <A 2 164 22 315 48 0 B> 2 165 23 315 48 0 3 B> 166 22 315 48 0 3 <A 2 167 21 315 48 0 <B 2 2 168 20 315 48 <A 23 + 176 12 315 <A 211 177 11 314 <B 212 178 12 313 4 A> 212 + 190 24 313 413 A> 191 25 313 413 1 B> 192 24 313 413 1 <A 2 193 25 313 413 0 B> 2 194 26 313 413 0 3 B> 195 25 313 413 0 3 <A 2 196 24 313 413 0 <B 2 2 197 23 313 413 <A 23 + 210 10 313 <A 216 211 9 312 <B 217 212 10 311 4 A> 217 + 229 27 311 418 A> 230 28 311 418 1 B> 231 27 311 418 1 <A 2 232 28 311 418 0 B> 2 233 29 311 418 0 3 B> 234 28 311 418 0 3 <A 2 235 27 311 418 0 <B 2 2 236 26 311 418 <A 23 + 254 8 311 <A 221 255 7 310 <B 222 256 8 39 4 A> 222 + 278 30 39 423 A> 279 31 39 423 1 B> 280 30 39 423 1 <A 2 281 31 39 423 0 B> 2 282 32 39 423 0 3 B> 283 31 39 423 0 3 <A 2 284 30 39 423 0 <B 2 2 285 29 39 423 <A 23 + 308 6 39 <A 226 309 5 38 <B 227 310 6 37 4 A> 227 + 337 33 37 428 A> 338 34 37 428 1 B> 339 33 37 428 1 <A 2 340 34 37 428 0 B> 2 341 35 37 428 0 3 B> 342 34 37 428 0 3 <A 2 343 33 37 428 0 <B 2 2 344 32 37 428 <A 23 + 372 4 37 <A 231 373 3 36 <B 232 374 4 35 4 A> 232 + 406 36 35 433 A> 407 37 35 433 1 B> 408 36 35 433 1 <A 2 409 37 35 433 0 B> 2 410 38 35 433 0 3 B> 411 37 35 433 0 3 <A 2 412 36 35 433 0 <B 2 2 413 35 35 433 <A 23 + 446 2 35 <A 236 447 1 34 <B 237 448 2 33 4 A> 237 + 485 39 33 438 A> 486 40 33 438 1 B> 487 39 33 438 1 <A 2 488 40 33 438 0 B> 2 489 41 33 438 0 3 B> 490 40 33 438 0 3 <A 2 491 39 33 438 0 <B 2 2 492 38 33 438 <A 23 + 530 0 33 <A 241 531 -1 3 3 <B 242 532 0 3 4 A> 242 + 574 42 3 443 A> 575 43 3 443 1 B> 576 42 3 443 1 <A 2 577 43 3 443 0 B> 2 578 44 3 443 0 3 B> 579 43 3 443 0 3 <A 2 580 42 3 443 0 <B 2 2 581 41 3 443 <A 23 + 624 -2 3 <A 246 625 -3 <B 247 626 -4 <A 248 627 -3 1 B> 248 + 675 45 1 348 B> 676 44 1 348 <A 2 677 43 1 347 <B 2 2 678 44 1 346 4 A> 2 2 + 680 46 1 346 43 A> 681 47 1 346 43 1 B> 682 46 1 346 43 1 <A 2 683 47 1 346 43 0 B> 2 684 48 1 346 43 0 3 B> 685 47 1 346 43 0 3 <A 2 686 46 1 346 43 0 <B 2 2 687 45 1 346 43 <A 23 + 690 42 1 346 <A 26 691 41 1 345 <B 27 692 42 1 344 4 A> 27 + 699 49 1 344 48 A> 700 50 1 344 48 1 B> 701 49 1 344 48 1 <A 2 702 50 1 344 48 0 B> 2 703 51 1 344 48 0 3 B> 704 50 1 344 48 0 3 <A 2 705 49 1 344 48 0 <B 2 2 706 48 1 344 48 <A 23 + 714 40 1 344 <A 211 715 39 1 343 <B 212 716 40 1 342 4 A> 212 + 728 52 1 342 413 A> 729 53 1 342 413 1 B> After 729 steps (201 lines): state = B. Produced 57 nonzeros. Tape index 53, scanned [-4 .. 52].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 561 | 20 | 18 | 242 | 35 | 246 | 0 | 2 | 14 | 5 | 23 |
B | 168 | 55 | 2 | 94 | 17 | 1 | 27 | 3 | 13 |