2-state 5-symbol #j from T.J. & S. Ligocki

Comment: This TM produces 172,312,766,455 nonzeros in 7,069,449,877,176,007,352,687 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 0RB 4RA 2LB 2LA 1 right B 0 right B 4 right A 2 left B 2 left A
B 2LA 1LB 3RB 4RA 1RH 2 left A 1 left B 3 right B 4 right A 1 right H
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     0  1 <A 2
     3     1  B> 2
     4     2  3 B>
     5     1  3 <A 2
     6     0  <B 2 2
     7    -1  <A 23
     8     0  1 B> 23
+   11     3  1 33 B>
    12     2  1 33 <A 2
    13     1  1 3 3 <B 2 2
    14     2  1 3 4 A> 2 2
+   16     4  1 3 43 A>
    17     5  1 3 43 1 B>
    18     4  1 3 43 1 <A 2
    19     5  1 3 43 0 B> 2
    20     6  1 3 43 0 3 B>
    21     5  1 3 43 0 3 <A 2
    22     4  1 3 43 0 <B 2 2
    23     3  1 3 43 <A 23
+   26     0  1 3 <A 26
    27    -1  1 <B 27
    28    -2  <B 1 27
    29    -3  <A 2 1 27
    30    -2  1 B> 2 1 27
    31    -1  1 3 B> 1 27
    32    -2  1 3 <B 1 27
    33    -1  1 4 A> 1 27
    34     0  1 4 0 B> 27
+   41     7  1 4 0 37 B>
    42     6  1 4 0 37 <A 2
    43     5  1 4 0 36 <B 2 2
    44     6  1 4 0 35 4 A> 2 2
+   46     8  1 4 0 35 43 A>
    47     9  1 4 0 35 43 1 B>
    48     8  1 4 0 35 43 1 <A 2
    49     9  1 4 0 35 43 0 B> 2
    50    10  1 4 0 35 43 0 3 B>
    51     9  1 4 0 35 43 0 3 <A 2
    52     8  1 4 0 35 43 0 <B 2 2
    53     7  1 4 0 35 43 <A 23
+   56     4  1 4 0 35 <A 26
    57     3  1 4 0 34 <B 27
    58     4  1 4 0 33 4 A> 27
+   65    11  1 4 0 33 48 A>
    66    12  1 4 0 33 48 1 B>
    67    11  1 4 0 33 48 1 <A 2
    68    12  1 4 0 33 48 0 B> 2
    69    13  1 4 0 33 48 0 3 B>
    70    12  1 4 0 33 48 0 3 <A 2
    71    11  1 4 0 33 48 0 <B 2 2
    72    10  1 4 0 33 48 <A 23
+   80     2  1 4 0 33 <A 211
    81     1  1 4 0 3 3 <B 212
    82     2  1 4 0 3 4 A> 212
+   94    14  1 4 0 3 413 A>
    95    15  1 4 0 3 413 1 B>
    96    14  1 4 0 3 413 1 <A 2
    97    15  1 4 0 3 413 0 B> 2
    98    16  1 4 0 3 413 0 3 B>
    99    15  1 4 0 3 413 0 3 <A 2
   100    14  1 4 0 3 413 0 <B 2 2
   101    13  1 4 0 3 413 <A 23
+  114     0  1 4 0 3 <A 216
   115    -1  1 4 0 <B 217
   116    -2  1 4 <A 218
   117    -3  1 <A 219
   118    -2  B> 219
+  137    17  319 B>
   138    16  319 <A 2
   139    15  318 <B 2 2
   140    16  317 4 A> 2 2
+  142    18  317 43 A>
   143    19  317 43 1 B>
   144    18  317 43 1 <A 2
   145    19  317 43 0 B> 2
   146    20  317 43 0 3 B>
   147    19  317 43 0 3 <A 2
   148    18  317 43 0 <B 2 2
   149    17  317 43 <A 23
+  152    14  317 <A 26
   153    13  316 <B 27
   154    14  315 4 A> 27
+  161    21  315 48 A>
   162    22  315 48 1 B>
   163    21  315 48 1 <A 2
   164    22  315 48 0 B> 2
   165    23  315 48 0 3 B>
   166    22  315 48 0 3 <A 2
   167    21  315 48 0 <B 2 2
   168    20  315 48 <A 23
+  176    12  315 <A 211
   177    11  314 <B 212
   178    12  313 4 A> 212
+  190    24  313 413 A>
   191    25  313 413 1 B>
   192    24  313 413 1 <A 2
   193    25  313 413 0 B> 2
   194    26  313 413 0 3 B>
   195    25  313 413 0 3 <A 2
   196    24  313 413 0 <B 2 2
   197    23  313 413 <A 23
+  210    10  313 <A 216
   211     9  312 <B 217
   212    10  311 4 A> 217
+  229    27  311 418 A>
   230    28  311 418 1 B>
   231    27  311 418 1 <A 2
   232    28  311 418 0 B> 2
   233    29  311 418 0 3 B>
   234    28  311 418 0 3 <A 2
   235    27  311 418 0 <B 2 2
   236    26  311 418 <A 23
+  254     8  311 <A 221
   255     7  310 <B 222
   256     8  39 4 A> 222
+  278    30  39 423 A>
   279    31  39 423 1 B>
   280    30  39 423 1 <A 2
   281    31  39 423 0 B> 2
   282    32  39 423 0 3 B>
   283    31  39 423 0 3 <A 2
   284    30  39 423 0 <B 2 2
   285    29  39 423 <A 23
+  308     6  39 <A 226
   309     5  38 <B 227
   310     6  37 4 A> 227
+  337    33  37 428 A>
   338    34  37 428 1 B>
   339    33  37 428 1 <A 2
   340    34  37 428 0 B> 2
   341    35  37 428 0 3 B>
   342    34  37 428 0 3 <A 2
   343    33  37 428 0 <B 2 2
   344    32  37 428 <A 23
+  372     4  37 <A 231
   373     3  36 <B 232
   374     4  35 4 A> 232
+  406    36  35 433 A>
   407    37  35 433 1 B>
   408    36  35 433 1 <A 2
   409    37  35 433 0 B> 2
   410    38  35 433 0 3 B>
   411    37  35 433 0 3 <A 2
   412    36  35 433 0 <B 2 2
   413    35  35 433 <A 23
+  446     2  35 <A 236
   447     1  34 <B 237
   448     2  33 4 A> 237
+  485    39  33 438 A>
   486    40  33 438 1 B>
   487    39  33 438 1 <A 2
   488    40  33 438 0 B> 2
   489    41  33 438 0 3 B>
   490    40  33 438 0 3 <A 2
   491    39  33 438 0 <B 2 2
   492    38  33 438 <A 23
+  530     0  33 <A 241
   531    -1  3 3 <B 242
   532     0  3 4 A> 242
+  574    42  3 443 A>
   575    43  3 443 1 B>
   576    42  3 443 1 <A 2
   577    43  3 443 0 B> 2
   578    44  3 443 0 3 B>
   579    43  3 443 0 3 <A 2
   580    42  3 443 0 <B 2 2
   581    41  3 443 <A 23
+  624    -2  3 <A 246
   625    -3  <B 247
   626    -4  <A 248
   627    -3  1 B> 248
+  675    45  1 348 B>
   676    44  1 348 <A 2
   677    43  1 347 <B 2 2
   678    44  1 346 4 A> 2 2
+  680    46  1 346 43 A>
   681    47  1 346 43 1 B>
   682    46  1 346 43 1 <A 2
   683    47  1 346 43 0 B> 2
   684    48  1 346 43 0 3 B>
   685    47  1 346 43 0 3 <A 2
   686    46  1 346 43 0 <B 2 2
   687    45  1 346 43 <A 23
+  690    42  1 346 <A 26
   691    41  1 345 <B 27
   692    42  1 344 4 A> 27
+  699    49  1 344 48 A>
   700    50  1 344 48 1 B>
   701    49  1 344 48 1 <A 2
   702    50  1 344 48 0 B> 2
   703    51  1 344 48 0 3 B>
   704    50  1 344 48 0 3 <A 2
   705    49  1 344 48 0 <B 2 2
   706    48  1 344 48 <A 23
+  714    40  1 344 <A 211
   715    39  1 343 <B 212
   716    40  1 342 4 A> 212
+  728    52  1 342 413 A>
   729    53  1 342 413 1 B>

After 729 steps (201 lines): state = B.
Produced     57 nonzeros.
Tape index 53, scanned [-4 .. 52].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 561 20 18 242 35 246 0 2 14 5 23
B 168 55 2 94 17   1 27 3 13  
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:51 CEST 2010