Comment: This TM produces 172,312,766,455 nonzeros in 7,069,449,877,176,007,352,687 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | 1RB | 0RB | 4RA | 2LB | 2LA | 1 | right | B | 0 | right | B | 4 | right | A | 2 | left | B | 2 | left | A |
| B | 2LA | 1LB | 3RB | 4RA | 1RH | 2 | left | A | 1 | left | B | 3 | right | B | 4 | right | A | 1 | right | H |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A 2
3 1 B> 2
4 2 3 B>
5 1 3 <A 2
6 0 <B 2 2
7 -1 <A 23
8 0 1 B> 23
+ 11 3 1 33 B>
12 2 1 33 <A 2
13 1 1 3 3 <B 2 2
14 2 1 3 4 A> 2 2
+ 16 4 1 3 43 A>
17 5 1 3 43 1 B>
18 4 1 3 43 1 <A 2
19 5 1 3 43 0 B> 2
20 6 1 3 43 0 3 B>
21 5 1 3 43 0 3 <A 2
22 4 1 3 43 0 <B 2 2
23 3 1 3 43 <A 23
+ 26 0 1 3 <A 26
27 -1 1 <B 27
28 -2 <B 1 27
29 -3 <A 2 1 27
30 -2 1 B> 2 1 27
31 -1 1 3 B> 1 27
32 -2 1 3 <B 1 27
33 -1 1 4 A> 1 27
34 0 1 4 0 B> 27
+ 41 7 1 4 0 37 B>
42 6 1 4 0 37 <A 2
43 5 1 4 0 36 <B 2 2
44 6 1 4 0 35 4 A> 2 2
+ 46 8 1 4 0 35 43 A>
47 9 1 4 0 35 43 1 B>
48 8 1 4 0 35 43 1 <A 2
49 9 1 4 0 35 43 0 B> 2
50 10 1 4 0 35 43 0 3 B>
51 9 1 4 0 35 43 0 3 <A 2
52 8 1 4 0 35 43 0 <B 2 2
53 7 1 4 0 35 43 <A 23
+ 56 4 1 4 0 35 <A 26
57 3 1 4 0 34 <B 27
58 4 1 4 0 33 4 A> 27
+ 65 11 1 4 0 33 48 A>
66 12 1 4 0 33 48 1 B>
67 11 1 4 0 33 48 1 <A 2
68 12 1 4 0 33 48 0 B> 2
69 13 1 4 0 33 48 0 3 B>
70 12 1 4 0 33 48 0 3 <A 2
71 11 1 4 0 33 48 0 <B 2 2
72 10 1 4 0 33 48 <A 23
+ 80 2 1 4 0 33 <A 211
81 1 1 4 0 3 3 <B 212
82 2 1 4 0 3 4 A> 212
+ 94 14 1 4 0 3 413 A>
95 15 1 4 0 3 413 1 B>
96 14 1 4 0 3 413 1 <A 2
97 15 1 4 0 3 413 0 B> 2
98 16 1 4 0 3 413 0 3 B>
99 15 1 4 0 3 413 0 3 <A 2
100 14 1 4 0 3 413 0 <B 2 2
101 13 1 4 0 3 413 <A 23
+ 114 0 1 4 0 3 <A 216
115 -1 1 4 0 <B 217
116 -2 1 4 <A 218
117 -3 1 <A 219
118 -2 B> 219
+ 137 17 319 B>
138 16 319 <A 2
139 15 318 <B 2 2
140 16 317 4 A> 2 2
+ 142 18 317 43 A>
143 19 317 43 1 B>
144 18 317 43 1 <A 2
145 19 317 43 0 B> 2
146 20 317 43 0 3 B>
147 19 317 43 0 3 <A 2
148 18 317 43 0 <B 2 2
149 17 317 43 <A 23
+ 152 14 317 <A 26
153 13 316 <B 27
154 14 315 4 A> 27
+ 161 21 315 48 A>
162 22 315 48 1 B>
163 21 315 48 1 <A 2
164 22 315 48 0 B> 2
165 23 315 48 0 3 B>
166 22 315 48 0 3 <A 2
167 21 315 48 0 <B 2 2
168 20 315 48 <A 23
+ 176 12 315 <A 211
177 11 314 <B 212
178 12 313 4 A> 212
+ 190 24 313 413 A>
191 25 313 413 1 B>
192 24 313 413 1 <A 2
193 25 313 413 0 B> 2
194 26 313 413 0 3 B>
195 25 313 413 0 3 <A 2
196 24 313 413 0 <B 2 2
197 23 313 413 <A 23
+ 210 10 313 <A 216
211 9 312 <B 217
212 10 311 4 A> 217
+ 229 27 311 418 A>
230 28 311 418 1 B>
231 27 311 418 1 <A 2
232 28 311 418 0 B> 2
233 29 311 418 0 3 B>
234 28 311 418 0 3 <A 2
235 27 311 418 0 <B 2 2
236 26 311 418 <A 23
+ 254 8 311 <A 221
255 7 310 <B 222
256 8 39 4 A> 222
+ 278 30 39 423 A>
279 31 39 423 1 B>
280 30 39 423 1 <A 2
281 31 39 423 0 B> 2
282 32 39 423 0 3 B>
283 31 39 423 0 3 <A 2
284 30 39 423 0 <B 2 2
285 29 39 423 <A 23
+ 308 6 39 <A 226
309 5 38 <B 227
310 6 37 4 A> 227
+ 337 33 37 428 A>
338 34 37 428 1 B>
339 33 37 428 1 <A 2
340 34 37 428 0 B> 2
341 35 37 428 0 3 B>
342 34 37 428 0 3 <A 2
343 33 37 428 0 <B 2 2
344 32 37 428 <A 23
+ 372 4 37 <A 231
373 3 36 <B 232
374 4 35 4 A> 232
+ 406 36 35 433 A>
407 37 35 433 1 B>
408 36 35 433 1 <A 2
409 37 35 433 0 B> 2
410 38 35 433 0 3 B>
411 37 35 433 0 3 <A 2
412 36 35 433 0 <B 2 2
413 35 35 433 <A 23
+ 446 2 35 <A 236
447 1 34 <B 237
448 2 33 4 A> 237
+ 485 39 33 438 A>
486 40 33 438 1 B>
487 39 33 438 1 <A 2
488 40 33 438 0 B> 2
489 41 33 438 0 3 B>
490 40 33 438 0 3 <A 2
491 39 33 438 0 <B 2 2
492 38 33 438 <A 23
+ 530 0 33 <A 241
531 -1 3 3 <B 242
532 0 3 4 A> 242
+ 574 42 3 443 A>
575 43 3 443 1 B>
576 42 3 443 1 <A 2
577 43 3 443 0 B> 2
578 44 3 443 0 3 B>
579 43 3 443 0 3 <A 2
580 42 3 443 0 <B 2 2
581 41 3 443 <A 23
+ 624 -2 3 <A 246
625 -3 <B 247
626 -4 <A 248
627 -3 1 B> 248
+ 675 45 1 348 B>
676 44 1 348 <A 2
677 43 1 347 <B 2 2
678 44 1 346 4 A> 2 2
+ 680 46 1 346 43 A>
681 47 1 346 43 1 B>
682 46 1 346 43 1 <A 2
683 47 1 346 43 0 B> 2
684 48 1 346 43 0 3 B>
685 47 1 346 43 0 3 <A 2
686 46 1 346 43 0 <B 2 2
687 45 1 346 43 <A 23
+ 690 42 1 346 <A 26
691 41 1 345 <B 27
692 42 1 344 4 A> 27
+ 699 49 1 344 48 A>
700 50 1 344 48 1 B>
701 49 1 344 48 1 <A 2
702 50 1 344 48 0 B> 2
703 51 1 344 48 0 3 B>
704 50 1 344 48 0 3 <A 2
705 49 1 344 48 0 <B 2 2
706 48 1 344 48 <A 23
+ 714 40 1 344 <A 211
715 39 1 343 <B 212
716 40 1 342 4 A> 212
+ 728 52 1 342 413 A>
729 53 1 342 413 1 B>
After 729 steps (201 lines): state = B.
Produced 57 nonzeros.
Tape index 53, scanned [-4 .. 52].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 561 | 20 | 18 | 242 | 35 | 246 | 0 | 2 | 14 | 5 | 23 |
| B | 168 | 55 | 2 | 94 | 17 | 1 | 27 | 3 | 13 | ||