2-state 5-symbol #i from T.J. & S. Ligocki

Comment: This TM produces 1,194,050,967 nonzeros in 339,466,124,499,007,251 steps.

State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 3LA 3LB 0LB 1RA 1 right B 3 left A 3 left B 0 left B 1 right A
B 2LA 4LB 4LA 1RA 1RH 2 left A 4 left B 4 left A 1 right A 1 right H
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing macro factor 1.

Steps BasSteps BasTpos  Tape contents
    0        0       0  A>
    1        1       1  1 B>
    2        2       0  1 <A 2
    3        3      -1  <A 3 2
    4        4       0  1 B> 3 2
    5        5       1  12 A> 2
    6        6       0  12 <B 3
    7        8      -2  <B 42 3
    8        9      -3  <A 2 42 3
    9       10      -2  1 B> 2 42 3
   10       11      -3  1 <A 43 3
   11       12      -4  <A 3 43 3
   12       13      -3  1 B> 3 43 3
   13       14      -2  12 A> 43 3
   14       17       1  15 A> 3
   15       18       0  15 <B
   16       23      -5  <B 45
   17       24      -6  <A 2 45
   18       25      -5  1 B> 2 45
   19       26      -6  1 <A 46
   20       27      -7  <A 3 46
   21       28      -6  1 B> 3 46
   22       29      -5  12 A> 46
   23       35       1  18 A>
   24       36       2  19 B>
   25       37       1  19 <A 2
   26       46      -8  <A 39 2
   27       47      -7  1 B> 39 2
   28       48      -6  12 A> 38 2
   29       49      -7  12 <B 0 37 2
   30       51      -9  <B 42 0 37 2
   31       52     -10  <A 2 42 0 37 2
   32       53      -9  1 B> 2 42 0 37 2
   33       54     -10  1 <A 43 0 37 2
   34       55     -11  <A 3 43 0 37 2
   35       56     -10  1 B> 3 43 0 37 2
   36       57      -9  12 A> 43 0 37 2
   37       60      -6  15 A> 0 37 2
   38       61      -5  16 B> 37 2
   39       62      -4  17 A> 36 2
   40       63      -5  17 <B 0 35 2
   41       70     -12  <B 47 0 35 2
   42       71     -13  <A 2 47 0 35 2
   43       72     -12  1 B> 2 47 0 35 2
   44       73     -13  1 <A 48 0 35 2
   45       74     -14  <A 3 48 0 35 2
   46       75     -13  1 B> 3 48 0 35 2
   47       76     -12  12 A> 48 0 35 2
   48       84      -4  110 A> 0 35 2
   49       85      -3  111 B> 35 2
   50       86      -2  112 A> 34 2
   51       87      -3  112 <B 0 33 2
   52       99     -15  <B 412 0 33 2
   53      100     -16  <A 2 412 0 33 2
   54      101     -15  1 B> 2 412 0 33 2
   55      102     -16  1 <A 413 0 33 2
   56      103     -17  <A 3 413 0 33 2
   57      104     -16  1 B> 3 413 0 33 2
   58      105     -15  12 A> 413 0 33 2
   59      118      -2  115 A> 0 33 2
   60      119      -1  116 B> 33 2
   61      120       0  117 A> 32 2
   62      121      -1  117 <B 0 3 2
   63      138     -18  <B 417 0 3 2
   64      139     -19  <A 2 417 0 3 2
   65      140     -18  1 B> 2 417 0 3 2
   66      141     -19  1 <A 418 0 3 2
   67      142     -20  <A 3 418 0 3 2
   68      143     -19  1 B> 3 418 0 3 2
   69      144     -18  12 A> 418 0 3 2
   70      162       0  120 A> 0 3 2
   71      163       1  121 B> 3 2
   72      164       2  122 A> 2
   73      165       1  122 <B 3
   74      187     -21  <B 422 3
   75      188     -22  <A 2 422 3
   76      189     -21  1 B> 2 422 3
   77      190     -22  1 <A 423 3
   78      191     -23  <A 3 423 3
   79      192     -22  1 B> 3 423 3
   80      193     -21  12 A> 423 3
   81      216       2  125 A> 3
   82      217       1  125 <B
   83      242     -24  <B 425
   84      243     -25  <A 2 425
   85      244     -24  1 B> 2 425
   86      245     -25  1 <A 426
   87      246     -26  <A 3 426
   88      247     -25  1 B> 3 426
   89      248     -24  12 A> 426
   90      274       2  128 A>
   91      275       3  129 B>
   92      276       2  129 <A 2
   93      305     -27  <A 329 2
   94      306     -26  1 B> 329 2
   95      307     -25  12 A> 328 2
   96      308     -26  12 <B 0 327 2
   97      310     -28  <B 42 0 327 2
   98      311     -29  <A 2 42 0 327 2
   99      312     -28  1 B> 2 42 0 327 2
  100      313     -29  1 <A 43 0 327 2
  101      314     -30  <A 3 43 0 327 2
  102      315     -29  1 B> 3 43 0 327 2
  103      316     -28  12 A> 43 0 327 2
  104      319     -25  15 A> 0 327 2
  105      320     -24  16 B> 327 2
  106      321     -23  17 A> 326 2
  107      322     -24  17 <B 0 325 2
  108      329     -31  <B 47 0 325 2
  109      330     -32  <A 2 47 0 325 2
  110      331     -31  1 B> 2 47 0 325 2
  111      332     -32  1 <A 48 0 325 2
  112      333     -33  <A 3 48 0 325 2
  113      334     -32  1 B> 3 48 0 325 2
  114      335     -31  12 A> 48 0 325 2
  115      343     -23  110 A> 0 325 2
  116      344     -22  111 B> 325 2
  117      345     -21  112 A> 324 2
  118      346     -22  112 <B 0 323 2
  119      358     -34  <B 412 0 323 2
  120      359     -35  <A 2 412 0 323 2
  121      360     -34  1 B> 2 412 0 323 2
  122      361     -35  1 <A 413 0 323 2
  123      362     -36  <A 3 413 0 323 2
  124      363     -35  1 B> 3 413 0 323 2
  125      364     -34  12 A> 413 0 323 2
  126      377     -21  115 A> 0 323 2
  127      378     -20  116 B> 323 2
  128      379     -19  117 A> 322 2
  129      380     -20  117 <B 0 321 2
  130      397     -37  <B 417 0 321 2
  131      398     -38  <A 2 417 0 321 2
  132      399     -37  1 B> 2 417 0 321 2
  133      400     -38  1 <A 418 0 321 2
  134      401     -39  <A 3 418 0 321 2
  135      402     -38  1 B> 3 418 0 321 2
  136      403     -37  12 A> 418 0 321 2
  137      421     -19  120 A> 0 321 2
  138      422     -18  121 B> 321 2
  139      423     -17  122 A> 320 2
  140      424     -18  122 <B 0 319 2
  141      446     -40  <B 422 0 319 2
  142      447     -41  <A 2 422 0 319 2
  143      448     -40  1 B> 2 422 0 319 2
  144      449     -41  1 <A 423 0 319 2
  145      450     -42  <A 3 423 0 319 2
  146      451     -41  1 B> 3 423 0 319 2
  147      452     -40  12 A> 423 0 319 2
  148      475     -17  125 A> 0 319 2
  149      476     -16  126 B> 319 2
  150      477     -15  127 A> 318 2
  151      478     -16  127 <B 0 317 2
  152      505     -43  <B 427 0 317 2
  153      506     -44  <A 2 427 0 317 2
  154      507     -43  1 B> 2 427 0 317 2
  155      508     -44  1 <A 428 0 317 2
  156      509     -45  <A 3 428 0 317 2
  157      510     -44  1 B> 3 428 0 317 2
  158      511     -43  12 A> 428 0 317 2
  159      539     -15  130 A> 0 317 2
  160      540     -14  131 B> 317 2
  161      541     -13  132 A> 316 2
  162      542     -14  132 <B 0 315 2
  163      574     -46  <B 432 0 315 2
  164      575     -47  <A 2 432 0 315 2
  165      576     -46  1 B> 2 432 0 315 2
  166      577     -47  1 <A 433 0 315 2
  167      578     -48  <A 3 433 0 315 2
  168      579     -47  1 B> 3 433 0 315 2
  169      580     -46  12 A> 433 0 315 2
  170      613     -13  135 A> 0 315 2
  171      614     -12  136 B> 315 2
  172      615     -11  137 A> 314 2
  173      616     -12  137 <B 0 313 2
  174      653     -49  <B 437 0 313 2
  175      654     -50  <A 2 437 0 313 2
  176      655     -49  1 B> 2 437 0 313 2
  177      656     -50  1 <A 438 0 313 2
  178      657     -51  <A 3 438 0 313 2
  179      658     -50  1 B> 3 438 0 313 2
  180      659     -49  12 A> 438 0 313 2
  181      697     -11  140 A> 0 313 2
  182      698     -10  141 B> 313 2
  183      699      -9  142 A> 312 2
  184      700     -10  142 <B 0 311 2
  185      742     -52  <B 442 0 311 2
  186      743     -53  <A 2 442 0 311 2
  187      744     -52  1 B> 2 442 0 311 2
  188      745     -53  1 <A 443 0 311 2
  189      746     -54  <A 3 443 0 311 2
  190      747     -53  1 B> 3 443 0 311 2
  191      748     -52  12 A> 443 0 311 2
  192      791      -9  145 A> 0 311 2
  193      792      -8  146 B> 311 2
  194      793      -7  147 A> 310 2
  195      794      -8  147 <B 0 39 2
  196      841     -55  <B 447 0 39 2
  197      842     -56  <A 2 447 0 39 2
  198      843     -55  1 B> 2 447 0 39 2
  199      844     -56  1 <A 448 0 39 2
  200      845     -57  <A 3 448 0 39 2

Lines:       201
Top steps:   200
Macro steps: 200
Basic steps: 845
Tape index:  -57
nonzeros:    59
log10(nonzeros):    1.771
log10(steps   ):    2.927

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    nbs 5
    T 2-state 5-symbol #i from T.J. & S. Ligocki
    5T  1RB 3LA 3LB 0LB 1RA  2LA 4LB 4LA 1RA 1RH
    : 1,194,050,967        339,466,124,499,007,251
    L 56
    M	201
    pref	sim
    machv Lig25_i  	just simple
    machv Lig25_i-r	with repetitions reduced
    machv Lig25_i-1	with tape symbol exponents
    machv Lig25_i-m	as 1-macro machine
    machv Lig25_i-a	as 1-macro machine with pure additive config-TRs
    iam	Lig25_i-m
    mtype	1
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:12:50 CEST 2010
    edate	Tue Jul  6 22:12:50 CEST 2010
    bnspeed	1

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:12:50 CEST 2010
Ready: Tue Jul 6 22:12:50 CEST 2010