Comment: This TM produces 1,194,050,967 nonzeros in 339,466,124,499,007,251 steps.
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | 1RB | 3LA | 3LB | 0LB | 1RA | 1 | right | B | 3 | left | A | 3 | left | B | 0 | left | B | 1 | right | A |
| B | 2LA | 4LB | 4LA | 1RA | 1RH | 2 | left | A | 4 | left | B | 4 | left | A | 1 | right | A | 1 | right | H |
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.
Simulation is done as 1-macro machine with pure additive config-TRs.
Pushing initial machine.
Pushing macro factor 1.
Steps BasSteps BasTpos Tape contents
0 0 0 A>
1 1 1 1 B>
2 2 0 1 <A 2
3 3 -1 <A 3 2
4 4 0 1 B> 3 2
5 5 1 12 A> 2
6 6 0 12 <B 3
7 8 -2 <B 42 3
8 9 -3 <A 2 42 3
9 10 -2 1 B> 2 42 3
10 11 -3 1 <A 43 3
11 12 -4 <A 3 43 3
12 13 -3 1 B> 3 43 3
13 14 -2 12 A> 43 3
14 17 1 15 A> 3
15 18 0 15 <B
16 23 -5 <B 45
17 24 -6 <A 2 45
18 25 -5 1 B> 2 45
19 26 -6 1 <A 46
20 27 -7 <A 3 46
21 28 -6 1 B> 3 46
22 29 -5 12 A> 46
23 35 1 18 A>
24 36 2 19 B>
25 37 1 19 <A 2
26 46 -8 <A 39 2
27 47 -7 1 B> 39 2
28 48 -6 12 A> 38 2
29 49 -7 12 <B 0 37 2
30 51 -9 <B 42 0 37 2
31 52 -10 <A 2 42 0 37 2
32 53 -9 1 B> 2 42 0 37 2
33 54 -10 1 <A 43 0 37 2
34 55 -11 <A 3 43 0 37 2
35 56 -10 1 B> 3 43 0 37 2
36 57 -9 12 A> 43 0 37 2
37 60 -6 15 A> 0 37 2
38 61 -5 16 B> 37 2
>> Try to prove a PA-CTR with 2 Vars...
0 0 0 11+V(1) B> 33+V(2) [*]*
1 1 1 12+V(1) A> 32+V(2) [*]*
2 2 0 12+V(1) <B 0 31+V(2) [*]*
3 4+V(1) -2+-1*V(1) <B 42+V(1) 0 31+V(2) [*]*
4 5+V(1) -3+-1*V(1) <A 2 42+V(1) 0 31+V(2) [*]*
5 6+V(1) -2+-1*V(1) 1 B> 2 42+V(1) 0 31+V(2) [*]*
6 7+V(1) -3+-1*V(1) 1 <A 43+V(1) 0 31+V(2) [*]*
7 8+V(1) -4+-1*V(1) <A 3 43+V(1) 0 31+V(2) [*]*
8 9+V(1) -3+-1*V(1) 1 B> 3 43+V(1) 0 31+V(2) [*]*
9 10+V(1) -2+-1*V(1) 12 A> 43+V(1) 0 31+V(2) [*]*
10 13+2*V(1) 1 15+V(1) A> 0 31+V(2) [*]*
11 14+2*V(1) 2 16+V(1) B> 31+V(2) [*]*
<< Success! ==> defined new CTR 1 (PA)
38 61 -5 16 B> 37 2
== Executing PA-CTR 1, V(1)=5, V(2)=4, repcount=3, factor=5/2
71 163 1 121 B> 3 2
72 164 2 122 A> 2
73 165 1 122 <B 3
74 187 -21 <B 422 3
75 188 -22 <A 2 422 3
76 189 -21 1 B> 2 422 3
77 190 -22 1 <A 423 3
78 191 -23 <A 3 423 3
79 192 -22 1 B> 3 423 3
80 193 -21 12 A> 423 3
81 216 2 125 A> 3
82 217 1 125 <B
83 242 -24 <B 425
84 243 -25 <A 2 425
85 244 -24 1 B> 2 425
86 245 -25 1 <A 426
87 246 -26 <A 3 426
88 247 -25 1 B> 3 426
89 248 -24 12 A> 426
90 274 2 128 A>
91 275 3 129 B>
92 276 2 129 <A 2
93 305 -27 <A 329 2
94 306 -26 1 B> 329 2
>> Try to prove a PPA-CTR with 1 Vars...
0 0 0 11+V(1) B> 3 2
1 1 1 12+V(1) A> 2
2 2 0 12+V(1) <B 3
3 4+V(1) -2+-1*V(1) <B 42+V(1) 3
4 5+V(1) -3+-1*V(1) <A 2 42+V(1) 3
5 6+V(1) -2+-1*V(1) 1 B> 2 42+V(1) 3
6 7+V(1) -3+-1*V(1) 1 <A 43+V(1) 3
7 8+V(1) -4+-1*V(1) <A 3 43+V(1) 3
8 9+V(1) -3+-1*V(1) 1 B> 3 43+V(1) 3
9 10+V(1) -2+-1*V(1) 12 A> 43+V(1) 3
10 13+2*V(1) 1 15+V(1) A> 3
11 14+2*V(1) 0 15+V(1) <B
12 19+3*V(1) -5+-1*V(1) <B 45+V(1)
13 20+3*V(1) -6+-1*V(1) <A 2 45+V(1)
14 21+3*V(1) -5+-1*V(1) 1 B> 2 45+V(1)
15 22+3*V(1) -6+-1*V(1) 1 <A 46+V(1)
16 23+3*V(1) -7+-1*V(1) <A 3 46+V(1)
17 24+3*V(1) -6+-1*V(1) 1 B> 3 46+V(1)
18 25+3*V(1) -5+-1*V(1) 12 A> 46+V(1)
19 31+4*V(1) 1 18+V(1) A>
20 32+4*V(1) 2 19+V(1) B>
21 33+4*V(1) 1 19+V(1) <A 2
22 42+5*V(1) -8+-1*V(1) <A 39+V(1) 2
23 43+5*V(1) -7+-1*V(1) 1 B> 39+V(1) 2
<< Success! ==> defined new CTR 2 (PPA)
94 306 -26 1 B> 329 2
== Executing PA-CTR 1, V(1)=0, V(2)=26, repcount=14, factor=5/2
248 1412 2 171 B> 3 2
== Executing PPA-CTR 2 (once), V(1)=70
271 1805 -75 1 B> 379 2
== Executing PA-CTR 1, V(1)=0, V(2)=76, repcount=39, factor=5/2
700 9761 3 1196 B> 3 2
== Executing PPA-CTR 2 (once), V(1)=195
723 10779 -199 1 B> 3204 2
== Executing PA-CTR 1, V(1)=0, V(2)=201, repcount=101, factor=5/2
1834 62693 3 1506 B> 32 2
1835 62694 4 1507 A> 3 2
1836 62695 3 1507 <B 0 2
1837 63202 -504 <B 4507 0 2
1838 63203 -505 <A 2 4507 0 2
1839 63204 -504 1 B> 2 4507 0 2
1840 63205 -505 1 <A 4508 0 2
1841 63206 -506 <A 3 4508 0 2
1842 63207 -505 1 B> 3 4508 0 2
1843 63208 -504 12 A> 4508 0 2
1844 63716 4 1510 A> 0 2
1845 63717 5 1511 B> 2
1846 63718 4 1511 <A 4
1847 64229 -507 <A 3511 4
1848 64230 -506 1 B> 3511 4
>> Try to prove a PPA-CTR with 1 Vars...
0 0 0 11+V(1) B> 32 2
1 1 1 12+V(1) A> 3 2
2 2 0 12+V(1) <B 0 2
3 4+V(1) -2+-1*V(1) <B 42+V(1) 0 2
4 5+V(1) -3+-1*V(1) <A 2 42+V(1) 0 2
5 6+V(1) -2+-1*V(1) 1 B> 2 42+V(1) 0 2
6 7+V(1) -3+-1*V(1) 1 <A 43+V(1) 0 2
7 8+V(1) -4+-1*V(1) <A 3 43+V(1) 0 2
8 9+V(1) -3+-1*V(1) 1 B> 3 43+V(1) 0 2
9 10+V(1) -2+-1*V(1) 12 A> 43+V(1) 0 2
10 13+2*V(1) 1 15+V(1) A> 0 2
11 14+2*V(1) 2 16+V(1) B> 2
12 15+2*V(1) 1 16+V(1) <A 4
13 21+3*V(1) -5+-1*V(1) <A 36+V(1) 4
14 22+3*V(1) -4+-1*V(1) 1 B> 36+V(1) 4
<< Success! ==> defined new CTR 3 (PPA)
1848 64230 -506 1 B> 3511 4
== Executing PA-CTR 1, V(1)=0, V(2)=508, repcount=255, factor=5/2
4653 391650 4 11276 B> 3 4
4654 391651 5 11277 A> 4
4655 391652 6 11278 A>
4656 391653 7 11279 B>
4657 391654 6 11279 <A 2
4658 392933 -1273 <A 31279 2
4659 392934 -1272 1 B> 31279 2
>> Try to prove a PPA-CTR with 2 Vars...
0 0 0 11+V(1) B> 3 41+V(2)
1 1 1 12+V(1) A> 41+V(2)
2 2+V(2) 2+V(2) 13+V(1)+V(2) A>
3 3+V(2) 3+V(2) 14+V(1)+V(2) B>
4 4+V(2) 2+V(2) 14+V(1)+V(2) <A 2
5 8+V(1)+2*V(2) -2+-1*V(1) <A 34+V(1)+V(2) 2
6 9+V(1)+2*V(2) -1+-1*V(1) 1 B> 34+V(1)+V(2) 2
<< Success! ==> defined new CTR 4 (PPA)
4659 392934 -1272 1 B> 31279 2
== Executing PA-CTR 1, V(1)=0, V(2)=1276, repcount=639, factor=5/2
11688 2440290 6 13196 B> 3 2
== Executing PPA-CTR 2 (once), V(1)=3195
11711 2456308 -3196 1 B> 33204 2
== Executing PA-CTR 1, V(1)=0, V(2)=3201, repcount=1601, factor=5/2
29322 15286722 6 18006 B> 32 2
== Executing PPA-CTR 3 (once), V(1)=8005
29336 15310759 -8003 1 B> 38011 4
== Executing PA-CTR 1, V(1)=0, V(2)=8008, repcount=4005, factor=5/2
73391 95546929 7 120026 B> 3 4
== Executing PPA-CTR 4 (once), V(1)=20025, V(2)=0
73397 95566963 -20019 1 B> 320029 2
== Executing PA-CTR 1, V(1)=0, V(2)=20026, repcount=10014, factor=5/2
183551 597058069 9 150071 B> 3 2
== Executing PPA-CTR 2 (once), V(1)=50070
183574 597308462 -50068 1 B> 350079 2
== Executing PA-CTR 1, V(1)=0, V(2)=50076, repcount=25039, factor=5/2
459003 3732291418 10 1125196 B> 3 2
== Executing PPA-CTR 2 (once), V(1)=125195
459026 3732917436 -125192 1 B> 3125204 2
== Executing PA-CTR 1, V(1)=0, V(2)=125201, repcount=62601, factor=5/2
1147637 23327906850 10 1313006 B> 32 2
== Executing PPA-CTR 3 (once), V(1)=313005
1147651 23328845887 -312999 1 B> 3313011 4
== Executing PA-CTR 1, V(1)=0, V(2)=313008, repcount=156505, factor=5/2
2869206 145799329557 11 1782526 B> 3 4
== Executing PPA-CTR 4 (once), V(1)=782525, V(2)=0
2869212 145800112091 -782515 1 B> 3782529 2
== Executing PA-CTR 1, V(1)=0, V(2)=782526, repcount=391264, factor=5/2
7173116 911241221947 13 11956321 B> 3 2
== Executing PPA-CTR 2 (once), V(1)=1956320
7173139 911251003590 -1956314 1 B> 31956329 2
== Executing PA-CTR 1, V(1)=0, V(2)=1956326, repcount=978164, factor=5/2
17932943 5695283861546 14 14890821 B> 3 2
== Executing PPA-CTR 2 (once), V(1)=4890820
17932966 5695308315689 -4890813 1 B> 34890829 2
== Executing PA-CTR 1, V(1)=0, V(2)=4890826, repcount=2445414, factor=5/2
44832520 35595578481395 15 112227071 B> 3 2
== Executing PPA-CTR 2 (once), V(1)=12227070
44832543 35595639616788 -12227062 1 B> 312227079 2
== Executing PA-CTR 1, V(1)=0, V(2)=12227076, repcount=6113539, factor=5/2
112081472 222472490161244 16 130567696 B> 3 2
== Executing PPA-CTR 2 (once), V(1)=30567695
112081495 222472642999762 -30567686 1 B> 330567704 2
== Executing PA-CTR 1, V(1)=0, V(2)=30567701, repcount=15283851, factor=5/2
280203856 1390453287505426 16 176419256 B> 32 2
== Executing PPA-CTR 3 (once), V(1)=76419255
280203870 1390453516763213 -76419243 1 B> 376419261 4
== Executing PA-CTR 1, V(1)=0, V(2)=76419258, repcount=38209630, factor=5/2
700509800 8690332984334383 17 1191048151 B> 3 4
== Executing PPA-CTR 4 (once), V(1)=191048150, V(2)=0
700509806 8690333175382542 -191048134 1 B> 3191048154 2
== Executing PA-CTR 1, V(1)=0, V(2)=191048151, repcount=95524076, factor=5/2
1751274642 54314579513368106 18 1477620381 B> 32 2
== Executing PPA-CTR 3 (once), V(1)=477620380
1751274656 54314580946229268 -477620366 1 B> 3477620386 4
== Executing PA-CTR 1, V(1)=0, V(2)=477620383, repcount=238810192, factor=5/2
4378186768 339466122110905316 18 11194050961 B> 32 4
4378186769 339466122110905317 19 11194050962 A> 3 4
4378186770 339466122110905318 18 11194050962 <B 0 4
4378186771 339466123304956280 -1194050944 <B 41194050962 0 4
4378186772 339466123304956281 -1194050945 <A 2 41194050962 0 4
4378186773 339466123304956282 -1194050944 1 B> 2 41194050962 0 4
4378186774 339466123304956283 -1194050945 1 <A 41194050963 0 4
4378186775 339466123304956284 -1194050946 <A 3 41194050963 0 4
4378186776 339466123304956285 -1194050945 1 B> 3 41194050963 0 4
4378186777 339466123304956286 -1194050944 12 A> 41194050963 0 4
4378186778 339466124499007249 19 11194050965 A> 0 4
4378186779 339466124499007250 20 11194050966 B> 4
4378186780 339466124499007251 21 11194050967 H>
4378186780 339466124499007251 21 11194050967 H> [stop]
Lines: 131
Top steps: 129
Macro steps: 4378186780
Basic steps: 339466124499007251
Tape index: 21
nonzeros: 1194050967
log10(nonzeros): 9.077
log10(steps ): 17.531
Run state: stop
Input to awk program:
gohalt 1
nbs 5
T 2-state 5-symbol #i from T.J. & S. Ligocki
5T 1RB 3LA 3LB 0LB 1RA 2LA 4LB 4LA 1RA 1RH
: 1,194,050,967 339,466,124,499,007,251
L 56
M 201
pref sim
machv Lig25_i just simple
machv Lig25_i-r with repetitions reduced
machv Lig25_i-1 with tape symbol exponents
machv Lig25_i-m as 1-macro machine
machv Lig25_i-a as 1-macro machine with pure additive config-TRs
iam Lig25_i-a
mtype 1
mmtyp 3
r 1
H 1
mac 0
E 2
sympr
HM 1
date Tue Jul 6 22:12:50 CEST 2010
edate Tue Jul 6 22:12:51 CEST 2010
bnspeed 1
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $
$Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $
$Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $
$Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $
$Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $
$Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $
bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:12:50 CEST 2010