2-state 5-symbol #f from T.J. & S. Ligocki

Comment: This TM produces 398,005,342 nonzeros in 37,716,251,406,088,468 steps.

State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 3LA 1LA 0LB 1RA 1 right B 3 left A 1 left A 0 left B 1 right A
B 2LA 4LB 4LA 1RA 1RH 2 left A 4 left B 4 left A 1 right A 1 right H
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing macro factor 1.

Steps BasSteps BasTpos  Tape contents
    0        0       0  A>
    1        1       1  1 B>
    2        2       0  1 <A 2
    3        3      -1  <A 3 2
    4        4       0  1 B> 3 2
    5        5       1  12 A> 2
    6        6       0  12 <A 1
    7        8      -2  <A 32 1
    8        9      -1  1 B> 32 1
    9       10       0  12 A> 3 1
   10       11      -1  12 <B 0 1
   11       13      -3  <B 42 0 1
   12       14      -4  <A 2 42 0 1
   13       15      -3  1 B> 2 42 0 1
   14       16      -4  1 <A 43 0 1
   15       17      -5  <A 3 43 0 1
   16       18      -4  1 B> 3 43 0 1
   17       19      -3  12 A> 43 0 1
   18       22       0  15 A> 0 1
   19       23       1  16 B> 1
   20       24       0  16 <B 4
   21       30      -6  <B 47
   22       31      -7  <A 2 47
   23       32      -6  1 B> 2 47
   24       33      -7  1 <A 48
   25       34      -8  <A 3 48
   26       35      -7  1 B> 3 48
   27       36      -6  12 A> 48
   28       44       2  110 A>
   29       45       3  111 B>
   30       46       2  111 <A 2
   31       57      -9  <A 311 2
   32       58      -8  1 B> 311 2
   33       59      -7  12 A> 310 2
   34       60      -8  12 <B 0 39 2
   35       62     -10  <B 42 0 39 2
   36       63     -11  <A 2 42 0 39 2
   37       64     -10  1 B> 2 42 0 39 2
   38       65     -11  1 <A 43 0 39 2
   39       66     -12  <A 3 43 0 39 2
   40       67     -11  1 B> 3 43 0 39 2
   41       68     -10  12 A> 43 0 39 2
   42       71      -7  15 A> 0 39 2
   43       72      -6  16 B> 39 2
   44       73      -5  17 A> 38 2
   45       74      -6  17 <B 0 37 2
   46       81     -13  <B 47 0 37 2
   47       82     -14  <A 2 47 0 37 2
   48       83     -13  1 B> 2 47 0 37 2
   49       84     -14  1 <A 48 0 37 2
   50       85     -15  <A 3 48 0 37 2
   51       86     -14  1 B> 3 48 0 37 2
   52       87     -13  12 A> 48 0 37 2
   53       95      -5  110 A> 0 37 2
   54       96      -4  111 B> 37 2
   55       97      -3  112 A> 36 2
   56       98      -4  112 <B 0 35 2
   57      110     -16  <B 412 0 35 2
   58      111     -17  <A 2 412 0 35 2
   59      112     -16  1 B> 2 412 0 35 2
   60      113     -17  1 <A 413 0 35 2
   61      114     -18  <A 3 413 0 35 2
   62      115     -17  1 B> 3 413 0 35 2
   63      116     -16  12 A> 413 0 35 2
   64      129      -3  115 A> 0 35 2
   65      130      -2  116 B> 35 2
   66      131      -1  117 A> 34 2
   67      132      -2  117 <B 0 33 2
   68      149     -19  <B 417 0 33 2
   69      150     -20  <A 2 417 0 33 2
   70      151     -19  1 B> 2 417 0 33 2
   71      152     -20  1 <A 418 0 33 2
   72      153     -21  <A 3 418 0 33 2
   73      154     -20  1 B> 3 418 0 33 2
   74      155     -19  12 A> 418 0 33 2
   75      173      -1  120 A> 0 33 2
   76      174       0  121 B> 33 2
   77      175       1  122 A> 32 2
   78      176       0  122 <B 0 3 2
   79      198     -22  <B 422 0 3 2
   80      199     -23  <A 2 422 0 3 2
   81      200     -22  1 B> 2 422 0 3 2
   82      201     -23  1 <A 423 0 3 2
   83      202     -24  <A 3 423 0 3 2
   84      203     -23  1 B> 3 423 0 3 2
   85      204     -22  12 A> 423 0 3 2
   86      227       1  125 A> 0 3 2
   87      228       2  126 B> 3 2
   88      229       3  127 A> 2
   89      230       2  127 <A 1
   90      257     -25  <A 327 1
   91      258     -24  1 B> 327 1
   92      259     -23  12 A> 326 1
   93      260     -24  12 <B 0 325 1
   94      262     -26  <B 42 0 325 1
   95      263     -27  <A 2 42 0 325 1
   96      264     -26  1 B> 2 42 0 325 1
   97      265     -27  1 <A 43 0 325 1
   98      266     -28  <A 3 43 0 325 1
   99      267     -27  1 B> 3 43 0 325 1
  100      268     -26  12 A> 43 0 325 1
  101      271     -23  15 A> 0 325 1
  102      272     -22  16 B> 325 1
  103      273     -21  17 A> 324 1
  104      274     -22  17 <B 0 323 1
  105      281     -29  <B 47 0 323 1
  106      282     -30  <A 2 47 0 323 1
  107      283     -29  1 B> 2 47 0 323 1
  108      284     -30  1 <A 48 0 323 1
  109      285     -31  <A 3 48 0 323 1
  110      286     -30  1 B> 3 48 0 323 1
  111      287     -29  12 A> 48 0 323 1
  112      295     -21  110 A> 0 323 1
  113      296     -20  111 B> 323 1
  114      297     -19  112 A> 322 1
  115      298     -20  112 <B 0 321 1
  116      310     -32  <B 412 0 321 1
  117      311     -33  <A 2 412 0 321 1
  118      312     -32  1 B> 2 412 0 321 1
  119      313     -33  1 <A 413 0 321 1
  120      314     -34  <A 3 413 0 321 1
  121      315     -33  1 B> 3 413 0 321 1
  122      316     -32  12 A> 413 0 321 1
  123      329     -19  115 A> 0 321 1
  124      330     -18  116 B> 321 1
  125      331     -17  117 A> 320 1
  126      332     -18  117 <B 0 319 1
  127      349     -35  <B 417 0 319 1
  128      350     -36  <A 2 417 0 319 1
  129      351     -35  1 B> 2 417 0 319 1
  130      352     -36  1 <A 418 0 319 1
  131      353     -37  <A 3 418 0 319 1
  132      354     -36  1 B> 3 418 0 319 1
  133      355     -35  12 A> 418 0 319 1
  134      373     -17  120 A> 0 319 1
  135      374     -16  121 B> 319 1
  136      375     -15  122 A> 318 1
  137      376     -16  122 <B 0 317 1
  138      398     -38  <B 422 0 317 1
  139      399     -39  <A 2 422 0 317 1
  140      400     -38  1 B> 2 422 0 317 1
  141      401     -39  1 <A 423 0 317 1
  142      402     -40  <A 3 423 0 317 1
  143      403     -39  1 B> 3 423 0 317 1
  144      404     -38  12 A> 423 0 317 1
  145      427     -15  125 A> 0 317 1
  146      428     -14  126 B> 317 1
  147      429     -13  127 A> 316 1
  148      430     -14  127 <B 0 315 1
  149      457     -41  <B 427 0 315 1
  150      458     -42  <A 2 427 0 315 1
  151      459     -41  1 B> 2 427 0 315 1
  152      460     -42  1 <A 428 0 315 1
  153      461     -43  <A 3 428 0 315 1
  154      462     -42  1 B> 3 428 0 315 1
  155      463     -41  12 A> 428 0 315 1
  156      491     -13  130 A> 0 315 1
  157      492     -12  131 B> 315 1
  158      493     -11  132 A> 314 1
  159      494     -12  132 <B 0 313 1
  160      526     -44  <B 432 0 313 1
  161      527     -45  <A 2 432 0 313 1
  162      528     -44  1 B> 2 432 0 313 1
  163      529     -45  1 <A 433 0 313 1
  164      530     -46  <A 3 433 0 313 1
  165      531     -45  1 B> 3 433 0 313 1
  166      532     -44  12 A> 433 0 313 1
  167      565     -11  135 A> 0 313 1
  168      566     -10  136 B> 313 1
  169      567      -9  137 A> 312 1
  170      568     -10  137 <B 0 311 1
  171      605     -47  <B 437 0 311 1
  172      606     -48  <A 2 437 0 311 1
  173      607     -47  1 B> 2 437 0 311 1
  174      608     -48  1 <A 438 0 311 1
  175      609     -49  <A 3 438 0 311 1
  176      610     -48  1 B> 3 438 0 311 1
  177      611     -47  12 A> 438 0 311 1
  178      649      -9  140 A> 0 311 1
  179      650      -8  141 B> 311 1
  180      651      -7  142 A> 310 1
  181      652      -8  142 <B 0 39 1
  182      694     -50  <B 442 0 39 1
  183      695     -51  <A 2 442 0 39 1
  184      696     -50  1 B> 2 442 0 39 1
  185      697     -51  1 <A 443 0 39 1
  186      698     -52  <A 3 443 0 39 1
  187      699     -51  1 B> 3 443 0 39 1
  188      700     -50  12 A> 443 0 39 1
  189      743      -7  145 A> 0 39 1
  190      744      -6  146 B> 39 1
  191      745      -5  147 A> 38 1
  192      746      -6  147 <B 0 37 1
  193      793     -53  <B 447 0 37 1
  194      794     -54  <A 2 447 0 37 1
  195      795     -53  1 B> 2 447 0 37 1
  196      796     -54  1 <A 448 0 37 1
  197      797     -55  <A 3 448 0 37 1
  198      798     -54  1 B> 3 448 0 37 1
  199      799     -53  12 A> 448 0 37 1
  200      847      -5  150 A> 0 37 1

Lines:       201
Top steps:   200
Macro steps: 200
Basic steps: 847
Tape index:  -5
nonzeros:    58
log10(nonzeros):    1.763
log10(steps   ):    2.928

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    nbs 5
    T 2-state 5-symbol #f from T.J. & S. Ligocki
    5T  1RB 3LA 1LA 0LB 1RA  2LA 4LB 4LA 1RA 1RH
    : 398,005,342         37,716,251,406,088,468
    L 55
    M	201
    pref	sim
    machv Lig25_f  	just simple
    machv Lig25_f-r	with repetitions reduced
    machv Lig25_f-1	with tape symbol exponents
    machv Lig25_f-m	as 1-macro machine
    machv Lig25_f-a	as 1-macro machine with pure additive config-TRs
    iam	Lig25_f-m
    mtype	1
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:12:45 CEST 2010
    edate	Tue Jul  6 22:12:45 CEST 2010
    bnspeed	1

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:12:45 CEST 2010
Ready: Tue Jul 6 22:12:45 CEST 2010