Comment: This TM produces 398,005,342 nonzeros in 37,716,251,406,088,468 steps.
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | 1RB | 3LA | 1LA | 0LB | 1RA | 1 | right | B | 3 | left | A | 1 | left | A | 0 | left | B | 1 | right | A |
B | 2LA | 4LB | 4LA | 1RA | 1RH | 2 | left | A | 4 | left | B | 4 | left | A | 1 | right | A | 1 | right | H |
The same TM just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as 1-macro machine. Simulation is done as 1-macro machine with pure additive config-TRs. Pushing initial machine. Pushing macro factor 1. Steps BasSteps BasTpos Tape contents 0 0 0 A> 1 1 1 1 B> 2 2 0 1 <A 2 3 3 -1 <A 3 2 4 4 0 1 B> 3 2 5 5 1 12 A> 2 6 6 0 12 <A 1 7 8 -2 <A 32 1 8 9 -1 1 B> 32 1 9 10 0 12 A> 3 1 10 11 -1 12 <B 0 1 11 13 -3 <B 42 0 1 12 14 -4 <A 2 42 0 1 13 15 -3 1 B> 2 42 0 1 14 16 -4 1 <A 43 0 1 15 17 -5 <A 3 43 0 1 16 18 -4 1 B> 3 43 0 1 17 19 -3 12 A> 43 0 1 18 22 0 15 A> 0 1 19 23 1 16 B> 1 20 24 0 16 <B 4 21 30 -6 <B 47 22 31 -7 <A 2 47 23 32 -6 1 B> 2 47 24 33 -7 1 <A 48 25 34 -8 <A 3 48 26 35 -7 1 B> 3 48 27 36 -6 12 A> 48 28 44 2 110 A> 29 45 3 111 B> 30 46 2 111 <A 2 31 57 -9 <A 311 2 32 58 -8 1 B> 311 2 33 59 -7 12 A> 310 2 34 60 -8 12 <B 0 39 2 35 62 -10 <B 42 0 39 2 36 63 -11 <A 2 42 0 39 2 37 64 -10 1 B> 2 42 0 39 2 38 65 -11 1 <A 43 0 39 2 39 66 -12 <A 3 43 0 39 2 40 67 -11 1 B> 3 43 0 39 2 41 68 -10 12 A> 43 0 39 2 42 71 -7 15 A> 0 39 2 43 72 -6 16 B> 39 2 >> Try to prove a PA-CTR with 2 Vars... 0 0 0 11+V(1) B> 33+V(2) [*]* 1 1 1 12+V(1) A> 32+V(2) [*]* 2 2 0 12+V(1) <B 0 31+V(2) [*]* 3 4+V(1) -2+-1*V(1) <B 42+V(1) 0 31+V(2) [*]* 4 5+V(1) -3+-1*V(1) <A 2 42+V(1) 0 31+V(2) [*]* 5 6+V(1) -2+-1*V(1) 1 B> 2 42+V(1) 0 31+V(2) [*]* 6 7+V(1) -3+-1*V(1) 1 <A 43+V(1) 0 31+V(2) [*]* 7 8+V(1) -4+-1*V(1) <A 3 43+V(1) 0 31+V(2) [*]* 8 9+V(1) -3+-1*V(1) 1 B> 3 43+V(1) 0 31+V(2) [*]* 9 10+V(1) -2+-1*V(1) 12 A> 43+V(1) 0 31+V(2) [*]* 10 13+2*V(1) 1 15+V(1) A> 0 31+V(2) [*]* 11 14+2*V(1) 2 16+V(1) B> 31+V(2) [*]* << Success! ==> defined new CTR 1 (PA) 43 72 -6 16 B> 39 2 == Executing PA-CTR 1, V(1)=5, V(2)=6, repcount=4, factor=5/2 87 228 2 126 B> 3 2 88 229 3 127 A> 2 89 230 2 127 <A 1 90 257 -25 <A 327 1 91 258 -24 1 B> 327 1 >> Try to prove a PPA-CTR with 1 Vars... 0 0 0 12+V(1) B> 3 2 1 1 1 13+V(1) A> 2 2 2 0 13+V(1) <A 1 3 5+V(1) -3+-1*V(1) <A 33+V(1) 1 4 6+V(1) -2+-1*V(1) 1 B> 33+V(1) 1 << Success! ==> defined new CTR 2 (PPA) 91 258 -24 1 B> 327 1 == Executing PA-CTR 1, V(1)=0, V(2)=24, repcount=13, factor=5/2 234 1220 2 166 B> 3 1 235 1221 3 167 A> 1 236 1222 2 167 <A 3 237 1289 -65 <A 368 238 1290 -64 1 B> 368 239 1291 -63 12 A> 367 240 1292 -64 12 <B 0 366 241 1294 -66 <B 42 0 366 242 1295 -67 <A 2 42 0 366 243 1296 -66 1 B> 2 42 0 366 244 1297 -67 1 <A 43 0 366 245 1298 -68 <A 3 43 0 366 246 1299 -67 1 B> 3 43 0 366 247 1300 -66 12 A> 43 0 366 248 1303 -63 15 A> 0 366 249 1304 -62 16 B> 366 >> Try to prove a PA-CTR with 2 Vars... 0 0 0 11+V(1) B> 33+V(2) 1 1 1 12+V(1) A> 32+V(2) 2 2 0 12+V(1) <B 0 31+V(2) 3 4+V(1) -2+-1*V(1) <B 42+V(1) 0 31+V(2) 4 5+V(1) -3+-1*V(1) <A 2 42+V(1) 0 31+V(2) 5 6+V(1) -2+-1*V(1) 1 B> 2 42+V(1) 0 31+V(2) 6 7+V(1) -3+-1*V(1) 1 <A 43+V(1) 0 31+V(2) 7 8+V(1) -4+-1*V(1) <A 3 43+V(1) 0 31+V(2) 8 9+V(1) -3+-1*V(1) 1 B> 3 43+V(1) 0 31+V(2) 9 10+V(1) -2+-1*V(1) 12 A> 43+V(1) 0 31+V(2) 10 13+2*V(1) 1 15+V(1) A> 0 31+V(2) 11 14+2*V(1) 2 16+V(1) B> 31+V(2) << Success! ==> defined new CTR 3 (PA) 249 1304 -62 16 B> 366 == Executing PA-CTR 3, V(1)=5, V(2)=63, repcount=32, factor=5/2 601 7032 2 1166 B> 32 602 7033 3 1167 A> 3 603 7034 2 1167 <B 604 7201 -165 <B 4167 605 7202 -166 <A 2 4167 606 7203 -165 1 B> 2 4167 607 7204 -166 1 <A 4168 608 7205 -167 <A 3 4168 609 7206 -166 1 B> 3 4168 610 7207 -165 12 A> 4168 611 7375 3 1170 A> 612 7376 4 1171 B> 613 7377 3 1171 <A 2 614 7548 -168 <A 3171 2 615 7549 -167 1 B> 3171 2 >> Try to prove a PPA-CTR with 1 Vars... 0 0 0 11+V(1) B> 32 1 1 1 12+V(1) A> 3 2 2 0 12+V(1) <B 3 4+V(1) -2+-1*V(1) <B 42+V(1) 4 5+V(1) -3+-1*V(1) <A 2 42+V(1) 5 6+V(1) -2+-1*V(1) 1 B> 2 42+V(1) 6 7+V(1) -3+-1*V(1) 1 <A 43+V(1) 7 8+V(1) -4+-1*V(1) <A 3 43+V(1) 8 9+V(1) -3+-1*V(1) 1 B> 3 43+V(1) 9 10+V(1) -2+-1*V(1) 12 A> 43+V(1) 10 13+2*V(1) 1 15+V(1) A> 11 14+2*V(1) 2 16+V(1) B> 12 15+2*V(1) 1 16+V(1) <A 2 13 21+3*V(1) -5+-1*V(1) <A 36+V(1) 2 14 22+3*V(1) -4+-1*V(1) 1 B> 36+V(1) 2 << Success! ==> defined new CTR 4 (PPA) 615 7549 -167 1 B> 3171 2 == Executing PA-CTR 1, V(1)=0, V(2)=168, repcount=85, factor=5/2 1550 44439 3 1426 B> 3 2 == Executing PPA-CTR 2 (once), V(1)=424 1554 44869 -423 1 B> 3427 1 == Executing PA-CTR 1, V(1)=0, V(2)=424, repcount=213, factor=5/2 3897 273631 3 11066 B> 3 1 3898 273632 4 11067 A> 1 3899 273633 3 11067 <A 3 3900 274700 -1064 <A 31068 3901 274701 -1063 1 B> 31068 >> Try to prove a PPA-CTR with 1 Vars... 0 0 0 11+V(1) B> 3 1 1 1 1 12+V(1) A> 1 2 2 0 12+V(1) <A 3 3 4+V(1) -2+-1*V(1) <A 33+V(1) 4 5+V(1) -1+-1*V(1) 1 B> 33+V(1) << Success! ==> defined new CTR 5 (PPA) 3901 274701 -1063 1 B> 31068 == Executing PA-CTR 3, V(1)=0, V(2)=1065, repcount=533, factor=5/2 9764 1699943 3 12666 B> 32 == Executing PPA-CTR 4 (once), V(1)=2665 9778 1707960 -2666 1 B> 32671 2 == Executing PA-CTR 1, V(1)=0, V(2)=2668, repcount=1335, factor=5/2 24463 10631100 4 16676 B> 3 2 == Executing PPA-CTR 2 (once), V(1)=6674 24467 10637780 -6672 1 B> 36677 1 == Executing PA-CTR 1, V(1)=0, V(2)=6674, repcount=3338, factor=5/2 61185 66379042 4 116691 B> 3 1 == Executing PPA-CTR 5 (once), V(1)=16690 61189 66395737 -16687 1 B> 316693 == Executing PA-CTR 3, V(1)=0, V(2)=16690, repcount=8346, factor=5/2 152995 414749431 5 141731 B> 3 152996 414749432 6 141732 A> 152997 414749433 7 141733 B> 152998 414749434 6 141733 <A 2 152999 414791167 -41727 <A 341733 2 153000 414791168 -41726 1 B> 341733 2 >> Try to prove a PPA-CTR with 1 Vars... 0 0 0 11+V(1) B> 3 1 1 1 12+V(1) A> 2 2 2 13+V(1) B> 3 3 1 13+V(1) <A 2 4 6+V(1) -2+-1*V(1) <A 33+V(1) 2 5 7+V(1) -1+-1*V(1) 1 B> 33+V(1) 2 << Success! ==> defined new CTR 6 (PPA) 153000 414791168 -41726 1 B> 341733 2 == Executing PA-CTR 1, V(1)=0, V(2)=41730, repcount=20866, factor=5/2 382526 2591928742 6 1104331 B> 3 2 == Executing PPA-CTR 2 (once), V(1)=104329 382530 2592033077 -104325 1 B> 3104332 1 == Executing PA-CTR 1, V(1)=0, V(2)=104329, repcount=52165, factor=5/2 956345 16198438687 5 1260826 B> 32 1 956346 16198438688 6 1260827 A> 3 1 956347 16198438689 5 1260827 <B 0 1 956348 16198699516 -260822 <B 4260827 0 1 956349 16198699517 -260823 <A 2 4260827 0 1 956350 16198699518 -260822 1 B> 2 4260827 0 1 956351 16198699519 -260823 1 <A 4260828 0 1 956352 16198699520 -260824 <A 3 4260828 0 1 956353 16198699521 -260823 1 B> 3 4260828 0 1 956354 16198699522 -260822 12 A> 4260828 0 1 956355 16198960350 6 1260830 A> 0 1 956356 16198960351 7 1260831 B> 1 956357 16198960352 6 1260831 <B 4 956358 16199221183 -260825 <B 4260832 956359 16199221184 -260826 <A 2 4260832 956360 16199221185 -260825 1 B> 2 4260832 956361 16199221186 -260826 1 <A 4260833 956362 16199221187 -260827 <A 3 4260833 956363 16199221188 -260826 1 B> 3 4260833 956364 16199221189 -260825 12 A> 4260833 956365 16199482022 8 1260835 A> 956366 16199482023 9 1260836 B> 956367 16199482024 8 1260836 <A 2 956368 16199742860 -260828 <A 3260836 2 956369 16199742861 -260827 1 B> 3260836 2 >> Try to prove a PPA-CTR with 1 Vars... 0 0 0 11+V(1) B> 32 1 1 1 1 12+V(1) A> 3 1 2 2 0 12+V(1) <B 0 1 3 4+V(1) -2+-1*V(1) <B 42+V(1) 0 1 4 5+V(1) -3+-1*V(1) <A 2 42+V(1) 0 1 5 6+V(1) -2+-1*V(1) 1 B> 2 42+V(1) 0 1 6 7+V(1) -3+-1*V(1) 1 <A 43+V(1) 0 1 7 8+V(1) -4+-1*V(1) <A 3 43+V(1) 0 1 8 9+V(1) -3+-1*V(1) 1 B> 3 43+V(1) 0 1 9 10+V(1) -2+-1*V(1) 12 A> 43+V(1) 0 1 10 13+2*V(1) 1 15+V(1) A> 0 1 11 14+2*V(1) 2 16+V(1) B> 1 12 15+2*V(1) 1 16+V(1) <B 4 13 21+3*V(1) -5+-1*V(1) <B 47+V(1) 14 22+3*V(1) -6+-1*V(1) <A 2 47+V(1) 15 23+3*V(1) -5+-1*V(1) 1 B> 2 47+V(1) 16 24+3*V(1) -6+-1*V(1) 1 <A 48+V(1) 17 25+3*V(1) -7+-1*V(1) <A 3 48+V(1) 18 26+3*V(1) -6+-1*V(1) 1 B> 3 48+V(1) 19 27+3*V(1) -5+-1*V(1) 12 A> 48+V(1) 20 35+4*V(1) 3 110+V(1) A> 21 36+4*V(1) 4 111+V(1) B> 22 37+4*V(1) 3 111+V(1) <A 2 23 48+5*V(1) -8+-1*V(1) <A 311+V(1) 2 24 49+5*V(1) -7+-1*V(1) 1 B> 311+V(1) 2 << Success! ==> defined new CTR 7 (PPA) 956369 16199742861 -260827 1 B> 3260836 2 == Executing PA-CTR 1, V(1)=0, V(2)=260833, repcount=130417, factor=5/2 2390956 101243886059 7 1652086 B> 32 2 2390957 101243886060 8 1652087 A> 3 2 2390958 101243886061 7 1652087 <B 0 2 2390959 101244538148 -652080 <B 4652087 0 2 2390960 101244538149 -652081 <A 2 4652087 0 2 2390961 101244538150 -652080 1 B> 2 4652087 0 2 2390962 101244538151 -652081 1 <A 4652088 0 2 2390963 101244538152 -652082 <A 3 4652088 0 2 2390964 101244538153 -652081 1 B> 3 4652088 0 2 2390965 101244538154 -652080 12 A> 4652088 0 2 2390966 101245190242 8 1652090 A> 0 2 2390967 101245190243 9 1652091 B> 2 2390968 101245190244 8 1652091 <A 4 2390969 101245842335 -652083 <A 3652091 4 2390970 101245842336 -652082 1 B> 3652091 4 >> Try to prove a PPA-CTR with 1 Vars... 0 0 0 11+V(1) B> 32 2 1 1 1 12+V(1) A> 3 2 2 2 0 12+V(1) <B 0 2 3 4+V(1) -2+-1*V(1) <B 42+V(1) 0 2 4 5+V(1) -3+-1*V(1) <A 2 42+V(1) 0 2 5 6+V(1) -2+-1*V(1) 1 B> 2 42+V(1) 0 2 6 7+V(1) -3+-1*V(1) 1 <A 43+V(1) 0 2 7 8+V(1) -4+-1*V(1) <A 3 43+V(1) 0 2 8 9+V(1) -3+-1*V(1) 1 B> 3 43+V(1) 0 2 9 10+V(1) -2+-1*V(1) 12 A> 43+V(1) 0 2 10 13+2*V(1) 1 15+V(1) A> 0 2 11 14+2*V(1) 2 16+V(1) B> 2 12 15+2*V(1) 1 16+V(1) <A 4 13 21+3*V(1) -5+-1*V(1) <A 36+V(1) 4 14 22+3*V(1) -4+-1*V(1) 1 B> 36+V(1) 4 << Success! ==> defined new CTR 8 (PPA) 2390970 101245842336 -652082 1 B> 3652091 4 == Executing PA-CTR 1, V(1)=0, V(2)=652088, repcount=326045, factor=5/2 5977465 632775486866 8 11630226 B> 3 4 5977466 632775486867 9 11630227 A> 4 5977467 632775486868 10 11630228 A> 5977468 632775486869 11 11630229 B> 5977469 632775486870 10 11630229 <A 2 5977470 632777117099 -1630219 <A 31630229 2 5977471 632777117100 -1630218 1 B> 31630229 2 >> Try to prove a PPA-CTR with 2 Vars... 0 0 0 11+V(1) B> 3 41+V(2) 1 1 1 12+V(1) A> 41+V(2) 2 2+V(2) 2+V(2) 13+V(1)+V(2) A> 3 3+V(2) 3+V(2) 14+V(1)+V(2) B> 4 4+V(2) 2+V(2) 14+V(1)+V(2) <A 2 5 8+V(1)+2*V(2) -2+-1*V(1) <A 34+V(1)+V(2) 2 6 9+V(1)+2*V(2) -1+-1*V(1) 1 B> 34+V(1)+V(2) 2 << Success! ==> defined new CTR 9 (PPA) 5977471 632777117100 -1630218 1 B> 31630229 2 == Executing PA-CTR 1, V(1)=0, V(2)=1630226, repcount=815114, factor=5/2 14943725 3954838618106 10 14075571 B> 3 2 == Executing PPA-CTR 2 (once), V(1)=4075569 14943729 3954842693681 -4075561 1 B> 34075572 1 == Executing PA-CTR 1, V(1)=0, V(2)=4075569, repcount=2037785, factor=5/2 37359364 24717699564871 9 110188926 B> 32 1 == Executing PPA-CTR 7 (once), V(1)=10188925 37359388 24717750509545 -10188923 1 B> 310188936 2 == Executing PA-CTR 1, V(1)=0, V(2)=10188933, repcount=5094467, factor=5/2 93398525 154485766430193 11 125472336 B> 32 2 == Executing PPA-CTR 8 (once), V(1)=25472335 93398539 154485842847220 -25472328 1 B> 325472341 4 == Executing PA-CTR 1, V(1)=0, V(2)=25472338, repcount=12736170, factor=5/2 233496409 965536088817250 12 163680851 B> 3 4 == Executing PPA-CTR 9 (once), V(1)=63680850, V(2)=0 233496415 965536152498109 -63680839 1 B> 363680854 2 == Executing PA-CTR 1, V(1)=0, V(2)=63680851, repcount=31840426, factor=5/2 583741101 6034600078369323 13 1159202131 B> 32 2 == Executing PPA-CTR 8 (once), V(1)=159202130 583741115 6034600555975735 -159202121 1 B> 3159202136 4 == Executing PA-CTR 1, V(1)=0, V(2)=159202133, repcount=79601067, factor=5/2 1459352852 37716250610077783 13 1398005336 B> 32 4 1459352853 37716250610077784 14 1398005337 A> 3 4 1459352854 37716250610077785 13 1398005337 <B 0 4 1459352855 37716251008083122 -398005324 <B 4398005337 0 4 1459352856 37716251008083123 -398005325 <A 2 4398005337 0 4 1459352857 37716251008083124 -398005324 1 B> 2 4398005337 0 4 1459352858 37716251008083125 -398005325 1 <A 4398005338 0 4 1459352859 37716251008083126 -398005326 <A 3 4398005338 0 4 1459352860 37716251008083127 -398005325 1 B> 3 4398005338 0 4 1459352861 37716251008083128 -398005324 12 A> 4398005338 0 4 1459352862 37716251406088466 14 1398005340 A> 0 4 1459352863 37716251406088467 15 1398005341 B> 4 1459352864 37716251406088468 16 1398005342 H> 1459352864 37716251406088468 16 1398005342 H> [stop] Lines: 172 Top steps: 170 Macro steps: 1459352864 Basic steps: 37716251406088468 Tape index: 16 nonzeros: 398005342 log10(nonzeros): 8.600 log10(steps ): 16.577 Run state: stop
Input to awk program: gohalt 1 nbs 5 T 2-state 5-symbol #f from T.J. & S. Ligocki 5T 1RB 3LA 1LA 0LB 1RA 2LA 4LB 4LA 1RA 1RH : 398,005,342 37,716,251,406,088,468 L 55 M 201 pref sim machv Lig25_f just simple machv Lig25_f-r with repetitions reduced machv Lig25_f-1 with tape symbol exponents machv Lig25_f-m as 1-macro machine machv Lig25_f-a as 1-macro machine with pure additive config-TRs iam Lig25_f-a mtype 1 mmtyp 3 r 1 H 1 mac 0 E 2 sympr HM 1 date Tue Jul 6 22:12:45 CEST 2010 edate Tue Jul 6 22:12:45 CEST 2010 bnspeed 1Start: Tue Jul 6 22:12:45 CEST 2010
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;