Comment: This TM produces 398,005,342 nonzeros in 37,716,251,406,088,468 steps.
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | 1RB | 3LA | 1LA | 0LB | 1RA | 1 | right | B | 3 | left | A | 1 | left | A | 0 | left | B | 1 | right | A |
| B | 2LA | 4LB | 4LA | 1RA | 1RH | 2 | left | A | 4 | left | B | 4 | left | A | 1 | right | A | 1 | right | H |
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.
Simulation is done as 1-macro machine with pure additive config-TRs.
Pushing initial machine.
Pushing macro factor 1.
Steps BasSteps BasTpos Tape contents
0 0 0 A>
1 1 1 1 B>
2 2 0 1 <A 2
3 3 -1 <A 3 2
4 4 0 1 B> 3 2
5 5 1 12 A> 2
6 6 0 12 <A 1
7 8 -2 <A 32 1
8 9 -1 1 B> 32 1
9 10 0 12 A> 3 1
10 11 -1 12 <B 0 1
11 13 -3 <B 42 0 1
12 14 -4 <A 2 42 0 1
13 15 -3 1 B> 2 42 0 1
14 16 -4 1 <A 43 0 1
15 17 -5 <A 3 43 0 1
16 18 -4 1 B> 3 43 0 1
17 19 -3 12 A> 43 0 1
18 22 0 15 A> 0 1
19 23 1 16 B> 1
20 24 0 16 <B 4
21 30 -6 <B 47
22 31 -7 <A 2 47
23 32 -6 1 B> 2 47
24 33 -7 1 <A 48
25 34 -8 <A 3 48
26 35 -7 1 B> 3 48
27 36 -6 12 A> 48
28 44 2 110 A>
29 45 3 111 B>
30 46 2 111 <A 2
31 57 -9 <A 311 2
32 58 -8 1 B> 311 2
33 59 -7 12 A> 310 2
34 60 -8 12 <B 0 39 2
35 62 -10 <B 42 0 39 2
36 63 -11 <A 2 42 0 39 2
37 64 -10 1 B> 2 42 0 39 2
38 65 -11 1 <A 43 0 39 2
39 66 -12 <A 3 43 0 39 2
40 67 -11 1 B> 3 43 0 39 2
41 68 -10 12 A> 43 0 39 2
42 71 -7 15 A> 0 39 2
43 72 -6 16 B> 39 2
>> Try to prove a PA-CTR with 2 Vars...
0 0 0 11+V(1) B> 33+V(2) [*]*
1 1 1 12+V(1) A> 32+V(2) [*]*
2 2 0 12+V(1) <B 0 31+V(2) [*]*
3 4+V(1) -2+-1*V(1) <B 42+V(1) 0 31+V(2) [*]*
4 5+V(1) -3+-1*V(1) <A 2 42+V(1) 0 31+V(2) [*]*
5 6+V(1) -2+-1*V(1) 1 B> 2 42+V(1) 0 31+V(2) [*]*
6 7+V(1) -3+-1*V(1) 1 <A 43+V(1) 0 31+V(2) [*]*
7 8+V(1) -4+-1*V(1) <A 3 43+V(1) 0 31+V(2) [*]*
8 9+V(1) -3+-1*V(1) 1 B> 3 43+V(1) 0 31+V(2) [*]*
9 10+V(1) -2+-1*V(1) 12 A> 43+V(1) 0 31+V(2) [*]*
10 13+2*V(1) 1 15+V(1) A> 0 31+V(2) [*]*
11 14+2*V(1) 2 16+V(1) B> 31+V(2) [*]*
<< Success! ==> defined new CTR 1 (PA)
43 72 -6 16 B> 39 2
== Executing PA-CTR 1, V(1)=5, V(2)=6, repcount=4, factor=5/2
87 228 2 126 B> 3 2
88 229 3 127 A> 2
89 230 2 127 <A 1
90 257 -25 <A 327 1
91 258 -24 1 B> 327 1
>> Try to prove a PPA-CTR with 1 Vars...
0 0 0 12+V(1) B> 3 2
1 1 1 13+V(1) A> 2
2 2 0 13+V(1) <A 1
3 5+V(1) -3+-1*V(1) <A 33+V(1) 1
4 6+V(1) -2+-1*V(1) 1 B> 33+V(1) 1
<< Success! ==> defined new CTR 2 (PPA)
91 258 -24 1 B> 327 1
== Executing PA-CTR 1, V(1)=0, V(2)=24, repcount=13, factor=5/2
234 1220 2 166 B> 3 1
235 1221 3 167 A> 1
236 1222 2 167 <A 3
237 1289 -65 <A 368
238 1290 -64 1 B> 368
239 1291 -63 12 A> 367
240 1292 -64 12 <B 0 366
241 1294 -66 <B 42 0 366
242 1295 -67 <A 2 42 0 366
243 1296 -66 1 B> 2 42 0 366
244 1297 -67 1 <A 43 0 366
245 1298 -68 <A 3 43 0 366
246 1299 -67 1 B> 3 43 0 366
247 1300 -66 12 A> 43 0 366
248 1303 -63 15 A> 0 366
249 1304 -62 16 B> 366
>> Try to prove a PA-CTR with 2 Vars...
0 0 0 11+V(1) B> 33+V(2)
1 1 1 12+V(1) A> 32+V(2)
2 2 0 12+V(1) <B 0 31+V(2)
3 4+V(1) -2+-1*V(1) <B 42+V(1) 0 31+V(2)
4 5+V(1) -3+-1*V(1) <A 2 42+V(1) 0 31+V(2)
5 6+V(1) -2+-1*V(1) 1 B> 2 42+V(1) 0 31+V(2)
6 7+V(1) -3+-1*V(1) 1 <A 43+V(1) 0 31+V(2)
7 8+V(1) -4+-1*V(1) <A 3 43+V(1) 0 31+V(2)
8 9+V(1) -3+-1*V(1) 1 B> 3 43+V(1) 0 31+V(2)
9 10+V(1) -2+-1*V(1) 12 A> 43+V(1) 0 31+V(2)
10 13+2*V(1) 1 15+V(1) A> 0 31+V(2)
11 14+2*V(1) 2 16+V(1) B> 31+V(2)
<< Success! ==> defined new CTR 3 (PA)
249 1304 -62 16 B> 366
== Executing PA-CTR 3, V(1)=5, V(2)=63, repcount=32, factor=5/2
601 7032 2 1166 B> 32
602 7033 3 1167 A> 3
603 7034 2 1167 <B
604 7201 -165 <B 4167
605 7202 -166 <A 2 4167
606 7203 -165 1 B> 2 4167
607 7204 -166 1 <A 4168
608 7205 -167 <A 3 4168
609 7206 -166 1 B> 3 4168
610 7207 -165 12 A> 4168
611 7375 3 1170 A>
612 7376 4 1171 B>
613 7377 3 1171 <A 2
614 7548 -168 <A 3171 2
615 7549 -167 1 B> 3171 2
>> Try to prove a PPA-CTR with 1 Vars...
0 0 0 11+V(1) B> 32
1 1 1 12+V(1) A> 3
2 2 0 12+V(1) <B
3 4+V(1) -2+-1*V(1) <B 42+V(1)
4 5+V(1) -3+-1*V(1) <A 2 42+V(1)
5 6+V(1) -2+-1*V(1) 1 B> 2 42+V(1)
6 7+V(1) -3+-1*V(1) 1 <A 43+V(1)
7 8+V(1) -4+-1*V(1) <A 3 43+V(1)
8 9+V(1) -3+-1*V(1) 1 B> 3 43+V(1)
9 10+V(1) -2+-1*V(1) 12 A> 43+V(1)
10 13+2*V(1) 1 15+V(1) A>
11 14+2*V(1) 2 16+V(1) B>
12 15+2*V(1) 1 16+V(1) <A 2
13 21+3*V(1) -5+-1*V(1) <A 36+V(1) 2
14 22+3*V(1) -4+-1*V(1) 1 B> 36+V(1) 2
<< Success! ==> defined new CTR 4 (PPA)
615 7549 -167 1 B> 3171 2
== Executing PA-CTR 1, V(1)=0, V(2)=168, repcount=85, factor=5/2
1550 44439 3 1426 B> 3 2
== Executing PPA-CTR 2 (once), V(1)=424
1554 44869 -423 1 B> 3427 1
== Executing PA-CTR 1, V(1)=0, V(2)=424, repcount=213, factor=5/2
3897 273631 3 11066 B> 3 1
3898 273632 4 11067 A> 1
3899 273633 3 11067 <A 3
3900 274700 -1064 <A 31068
3901 274701 -1063 1 B> 31068
>> Try to prove a PPA-CTR with 1 Vars...
0 0 0 11+V(1) B> 3 1
1 1 1 12+V(1) A> 1
2 2 0 12+V(1) <A 3
3 4+V(1) -2+-1*V(1) <A 33+V(1)
4 5+V(1) -1+-1*V(1) 1 B> 33+V(1)
<< Success! ==> defined new CTR 5 (PPA)
3901 274701 -1063 1 B> 31068
== Executing PA-CTR 3, V(1)=0, V(2)=1065, repcount=533, factor=5/2
9764 1699943 3 12666 B> 32
== Executing PPA-CTR 4 (once), V(1)=2665
9778 1707960 -2666 1 B> 32671 2
== Executing PA-CTR 1, V(1)=0, V(2)=2668, repcount=1335, factor=5/2
24463 10631100 4 16676 B> 3 2
== Executing PPA-CTR 2 (once), V(1)=6674
24467 10637780 -6672 1 B> 36677 1
== Executing PA-CTR 1, V(1)=0, V(2)=6674, repcount=3338, factor=5/2
61185 66379042 4 116691 B> 3 1
== Executing PPA-CTR 5 (once), V(1)=16690
61189 66395737 -16687 1 B> 316693
== Executing PA-CTR 3, V(1)=0, V(2)=16690, repcount=8346, factor=5/2
152995 414749431 5 141731 B> 3
152996 414749432 6 141732 A>
152997 414749433 7 141733 B>
152998 414749434 6 141733 <A 2
152999 414791167 -41727 <A 341733 2
153000 414791168 -41726 1 B> 341733 2
>> Try to prove a PPA-CTR with 1 Vars...
0 0 0 11+V(1) B> 3
1 1 1 12+V(1) A>
2 2 2 13+V(1) B>
3 3 1 13+V(1) <A 2
4 6+V(1) -2+-1*V(1) <A 33+V(1) 2
5 7+V(1) -1+-1*V(1) 1 B> 33+V(1) 2
<< Success! ==> defined new CTR 6 (PPA)
153000 414791168 -41726 1 B> 341733 2
== Executing PA-CTR 1, V(1)=0, V(2)=41730, repcount=20866, factor=5/2
382526 2591928742 6 1104331 B> 3 2
== Executing PPA-CTR 2 (once), V(1)=104329
382530 2592033077 -104325 1 B> 3104332 1
== Executing PA-CTR 1, V(1)=0, V(2)=104329, repcount=52165, factor=5/2
956345 16198438687 5 1260826 B> 32 1
956346 16198438688 6 1260827 A> 3 1
956347 16198438689 5 1260827 <B 0 1
956348 16198699516 -260822 <B 4260827 0 1
956349 16198699517 -260823 <A 2 4260827 0 1
956350 16198699518 -260822 1 B> 2 4260827 0 1
956351 16198699519 -260823 1 <A 4260828 0 1
956352 16198699520 -260824 <A 3 4260828 0 1
956353 16198699521 -260823 1 B> 3 4260828 0 1
956354 16198699522 -260822 12 A> 4260828 0 1
956355 16198960350 6 1260830 A> 0 1
956356 16198960351 7 1260831 B> 1
956357 16198960352 6 1260831 <B 4
956358 16199221183 -260825 <B 4260832
956359 16199221184 -260826 <A 2 4260832
956360 16199221185 -260825 1 B> 2 4260832
956361 16199221186 -260826 1 <A 4260833
956362 16199221187 -260827 <A 3 4260833
956363 16199221188 -260826 1 B> 3 4260833
956364 16199221189 -260825 12 A> 4260833
956365 16199482022 8 1260835 A>
956366 16199482023 9 1260836 B>
956367 16199482024 8 1260836 <A 2
956368 16199742860 -260828 <A 3260836 2
956369 16199742861 -260827 1 B> 3260836 2
>> Try to prove a PPA-CTR with 1 Vars...
0 0 0 11+V(1) B> 32 1
1 1 1 12+V(1) A> 3 1
2 2 0 12+V(1) <B 0 1
3 4+V(1) -2+-1*V(1) <B 42+V(1) 0 1
4 5+V(1) -3+-1*V(1) <A 2 42+V(1) 0 1
5 6+V(1) -2+-1*V(1) 1 B> 2 42+V(1) 0 1
6 7+V(1) -3+-1*V(1) 1 <A 43+V(1) 0 1
7 8+V(1) -4+-1*V(1) <A 3 43+V(1) 0 1
8 9+V(1) -3+-1*V(1) 1 B> 3 43+V(1) 0 1
9 10+V(1) -2+-1*V(1) 12 A> 43+V(1) 0 1
10 13+2*V(1) 1 15+V(1) A> 0 1
11 14+2*V(1) 2 16+V(1) B> 1
12 15+2*V(1) 1 16+V(1) <B 4
13 21+3*V(1) -5+-1*V(1) <B 47+V(1)
14 22+3*V(1) -6+-1*V(1) <A 2 47+V(1)
15 23+3*V(1) -5+-1*V(1) 1 B> 2 47+V(1)
16 24+3*V(1) -6+-1*V(1) 1 <A 48+V(1)
17 25+3*V(1) -7+-1*V(1) <A 3 48+V(1)
18 26+3*V(1) -6+-1*V(1) 1 B> 3 48+V(1)
19 27+3*V(1) -5+-1*V(1) 12 A> 48+V(1)
20 35+4*V(1) 3 110+V(1) A>
21 36+4*V(1) 4 111+V(1) B>
22 37+4*V(1) 3 111+V(1) <A 2
23 48+5*V(1) -8+-1*V(1) <A 311+V(1) 2
24 49+5*V(1) -7+-1*V(1) 1 B> 311+V(1) 2
<< Success! ==> defined new CTR 7 (PPA)
956369 16199742861 -260827 1 B> 3260836 2
== Executing PA-CTR 1, V(1)=0, V(2)=260833, repcount=130417, factor=5/2
2390956 101243886059 7 1652086 B> 32 2
2390957 101243886060 8 1652087 A> 3 2
2390958 101243886061 7 1652087 <B 0 2
2390959 101244538148 -652080 <B 4652087 0 2
2390960 101244538149 -652081 <A 2 4652087 0 2
2390961 101244538150 -652080 1 B> 2 4652087 0 2
2390962 101244538151 -652081 1 <A 4652088 0 2
2390963 101244538152 -652082 <A 3 4652088 0 2
2390964 101244538153 -652081 1 B> 3 4652088 0 2
2390965 101244538154 -652080 12 A> 4652088 0 2
2390966 101245190242 8 1652090 A> 0 2
2390967 101245190243 9 1652091 B> 2
2390968 101245190244 8 1652091 <A 4
2390969 101245842335 -652083 <A 3652091 4
2390970 101245842336 -652082 1 B> 3652091 4
>> Try to prove a PPA-CTR with 1 Vars...
0 0 0 11+V(1) B> 32 2
1 1 1 12+V(1) A> 3 2
2 2 0 12+V(1) <B 0 2
3 4+V(1) -2+-1*V(1) <B 42+V(1) 0 2
4 5+V(1) -3+-1*V(1) <A 2 42+V(1) 0 2
5 6+V(1) -2+-1*V(1) 1 B> 2 42+V(1) 0 2
6 7+V(1) -3+-1*V(1) 1 <A 43+V(1) 0 2
7 8+V(1) -4+-1*V(1) <A 3 43+V(1) 0 2
8 9+V(1) -3+-1*V(1) 1 B> 3 43+V(1) 0 2
9 10+V(1) -2+-1*V(1) 12 A> 43+V(1) 0 2
10 13+2*V(1) 1 15+V(1) A> 0 2
11 14+2*V(1) 2 16+V(1) B> 2
12 15+2*V(1) 1 16+V(1) <A 4
13 21+3*V(1) -5+-1*V(1) <A 36+V(1) 4
14 22+3*V(1) -4+-1*V(1) 1 B> 36+V(1) 4
<< Success! ==> defined new CTR 8 (PPA)
2390970 101245842336 -652082 1 B> 3652091 4
== Executing PA-CTR 1, V(1)=0, V(2)=652088, repcount=326045, factor=5/2
5977465 632775486866 8 11630226 B> 3 4
5977466 632775486867 9 11630227 A> 4
5977467 632775486868 10 11630228 A>
5977468 632775486869 11 11630229 B>
5977469 632775486870 10 11630229 <A 2
5977470 632777117099 -1630219 <A 31630229 2
5977471 632777117100 -1630218 1 B> 31630229 2
>> Try to prove a PPA-CTR with 2 Vars...
0 0 0 11+V(1) B> 3 41+V(2)
1 1 1 12+V(1) A> 41+V(2)
2 2+V(2) 2+V(2) 13+V(1)+V(2) A>
3 3+V(2) 3+V(2) 14+V(1)+V(2) B>
4 4+V(2) 2+V(2) 14+V(1)+V(2) <A 2
5 8+V(1)+2*V(2) -2+-1*V(1) <A 34+V(1)+V(2) 2
6 9+V(1)+2*V(2) -1+-1*V(1) 1 B> 34+V(1)+V(2) 2
<< Success! ==> defined new CTR 9 (PPA)
5977471 632777117100 -1630218 1 B> 31630229 2
== Executing PA-CTR 1, V(1)=0, V(2)=1630226, repcount=815114, factor=5/2
14943725 3954838618106 10 14075571 B> 3 2
== Executing PPA-CTR 2 (once), V(1)=4075569
14943729 3954842693681 -4075561 1 B> 34075572 1
== Executing PA-CTR 1, V(1)=0, V(2)=4075569, repcount=2037785, factor=5/2
37359364 24717699564871 9 110188926 B> 32 1
== Executing PPA-CTR 7 (once), V(1)=10188925
37359388 24717750509545 -10188923 1 B> 310188936 2
== Executing PA-CTR 1, V(1)=0, V(2)=10188933, repcount=5094467, factor=5/2
93398525 154485766430193 11 125472336 B> 32 2
== Executing PPA-CTR 8 (once), V(1)=25472335
93398539 154485842847220 -25472328 1 B> 325472341 4
== Executing PA-CTR 1, V(1)=0, V(2)=25472338, repcount=12736170, factor=5/2
233496409 965536088817250 12 163680851 B> 3 4
== Executing PPA-CTR 9 (once), V(1)=63680850, V(2)=0
233496415 965536152498109 -63680839 1 B> 363680854 2
== Executing PA-CTR 1, V(1)=0, V(2)=63680851, repcount=31840426, factor=5/2
583741101 6034600078369323 13 1159202131 B> 32 2
== Executing PPA-CTR 8 (once), V(1)=159202130
583741115 6034600555975735 -159202121 1 B> 3159202136 4
== Executing PA-CTR 1, V(1)=0, V(2)=159202133, repcount=79601067, factor=5/2
1459352852 37716250610077783 13 1398005336 B> 32 4
1459352853 37716250610077784 14 1398005337 A> 3 4
1459352854 37716250610077785 13 1398005337 <B 0 4
1459352855 37716251008083122 -398005324 <B 4398005337 0 4
1459352856 37716251008083123 -398005325 <A 2 4398005337 0 4
1459352857 37716251008083124 -398005324 1 B> 2 4398005337 0 4
1459352858 37716251008083125 -398005325 1 <A 4398005338 0 4
1459352859 37716251008083126 -398005326 <A 3 4398005338 0 4
1459352860 37716251008083127 -398005325 1 B> 3 4398005338 0 4
1459352861 37716251008083128 -398005324 12 A> 4398005338 0 4
1459352862 37716251406088466 14 1398005340 A> 0 4
1459352863 37716251406088467 15 1398005341 B> 4
1459352864 37716251406088468 16 1398005342 H>
1459352864 37716251406088468 16 1398005342 H> [stop]
Lines: 172
Top steps: 170
Macro steps: 1459352864
Basic steps: 37716251406088468
Tape index: 16
nonzeros: 398005342
log10(nonzeros): 8.600
log10(steps ): 16.577
Run state: stop
Input to awk program:
gohalt 1
nbs 5
T 2-state 5-symbol #f from T.J. & S. Ligocki
5T 1RB 3LA 1LA 0LB 1RA 2LA 4LB 4LA 1RA 1RH
: 398,005,342 37,716,251,406,088,468
L 55
M 201
pref sim
machv Lig25_f just simple
machv Lig25_f-r with repetitions reduced
machv Lig25_f-1 with tape symbol exponents
machv Lig25_f-m as 1-macro machine
machv Lig25_f-a as 1-macro machine with pure additive config-TRs
iam Lig25_f-a
mtype 1
mmtyp 3
r 1
H 1
mac 0
E 2
sympr
HM 1
date Tue Jul 6 22:12:45 CEST 2010
edate Tue Jul 6 22:12:45 CEST 2010
bnspeed 1
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $
$Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $
$Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $
$Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $
$Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $
$Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $
bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:12:45 CEST 2010