Comment: This TM produces 114,668,733 nonzeros in 9,392,084,729,807,219 steps.
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | 1RB | 2RA | 1LA | 3LA | 2RA | 1 | right | B | 2 | right | A | 1 | left | A | 3 | left | A | 2 | right | A |
B | 2LA | 3RB | 4LA | 1LB | 1RH | 2 | left | A | 3 | right | B | 4 | left | A | 1 | left | B | 1 | right | H |
The same TM just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. Simulation is done as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Pushing initial machine. Pushing macro factor 1. Steps BasSteps BasTpos Tape contents 0 0 0 A> 1 1 1 1 B> 2 2 0 1 <A 2 3 3 1 2 A> 2 4 4 0 2 <A 1 5 5 -1 <A 12 6 6 0 1 B> 12 7 8 2 1 32 B> 8 9 1 1 32 <A 2 9 11 -1 1 <A 32 2 10 12 0 2 A> 32 2 11 13 -1 2 <A 32 2 12 14 -2 <A 1 32 2 13 15 -1 1 B> 1 32 2 14 16 0 1 3 B> 32 2 15 17 -1 1 3 <B 1 3 2 16 18 -2 1 <B 12 3 2 17 19 -1 3 B> 12 3 2 18 21 1 33 B> 3 2 19 22 0 33 <B 1 2 20 25 -3 <B 14 2 21 26 -4 <A 2 14 2 22 27 -3 1 B> 2 14 2 23 28 -4 1 <A 4 14 2 24 29 -3 2 A> 4 14 2 25 30 -2 22 A> 14 2 26 34 2 26 A> 2 27 35 1 26 <A 1 28 41 -5 <A 17 29 42 -4 1 B> 17 30 49 3 1 37 B> 31 50 2 1 37 <A 2 32 57 -5 1 <A 37 2 33 58 -4 2 A> 37 2 34 59 -5 2 <A 37 2 35 60 -6 <A 1 37 2 36 61 -5 1 B> 1 37 2 37 62 -4 1 3 B> 37 2 38 63 -5 1 3 <B 1 36 2 39 64 -6 1 <B 12 36 2 40 65 -5 3 B> 12 36 2 41 67 -3 33 B> 36 2 42 68 -4 33 <B 1 35 2 43 71 -7 <B 14 35 2 44 72 -8 <A 2 14 35 2 45 73 -7 1 B> 2 14 35 2 46 74 -8 1 <A 4 14 35 2 47 75 -7 2 A> 4 14 35 2 48 76 -6 22 A> 14 35 2 49 80 -2 26 A> 35 2 50 81 -3 26 <A 35 2 51 87 -9 <A 16 35 2 52 88 -8 1 B> 16 35 2 53 94 -2 1 36 B> 35 2 54 95 -3 1 36 <B 1 34 2 55 101 -9 1 <B 17 34 2 56 102 -8 3 B> 17 34 2 57 109 -1 38 B> 34 2 58 110 -2 38 <B 1 33 2 59 118 -10 <B 19 33 2 60 119 -11 <A 2 19 33 2 61 120 -10 1 B> 2 19 33 2 62 121 -11 1 <A 4 19 33 2 63 122 -10 2 A> 4 19 33 2 64 123 -9 22 A> 19 33 2 65 132 0 211 A> 33 2 66 133 -1 211 <A 33 2 67 144 -12 <A 111 33 2 68 145 -11 1 B> 111 33 2 69 156 0 1 311 B> 33 2 70 157 -1 1 311 <B 1 32 2 71 168 -12 1 <B 112 32 2 72 169 -11 3 B> 112 32 2 73 181 1 313 B> 32 2 74 182 0 313 <B 1 3 2 75 195 -13 <B 114 3 2 76 196 -14 <A 2 114 3 2 77 197 -13 1 B> 2 114 3 2 78 198 -14 1 <A 4 114 3 2 79 199 -13 2 A> 4 114 3 2 80 200 -12 22 A> 114 3 2 81 214 2 216 A> 3 2 82 215 1 216 <A 3 2 83 231 -15 <A 116 3 2 84 232 -14 1 B> 116 3 2 85 248 2 1 316 B> 3 2 86 249 1 1 316 <B 1 2 87 265 -15 1 <B 117 2 88 266 -14 3 B> 117 2 89 283 3 318 B> 2 90 284 2 318 <A 4 91 302 -16 <A 318 4 92 303 -15 1 B> 318 4 93 304 -16 1 <B 1 317 4 94 305 -15 3 B> 1 317 4 95 306 -14 32 B> 317 4 96 307 -15 32 <B 1 316 4 97 309 -17 <B 13 316 4 98 310 -18 <A 2 13 316 4 99 311 -17 1 B> 2 13 316 4 100 312 -18 1 <A 4 13 316 4 101 313 -17 2 A> 4 13 316 4 102 314 -16 22 A> 13 316 4 103 317 -13 25 A> 316 4 104 318 -14 25 <A 316 4 105 323 -19 <A 15 316 4 106 324 -18 1 B> 15 316 4 107 329 -13 1 35 B> 316 4 108 330 -14 1 35 <B 1 315 4 109 335 -19 1 <B 16 315 4 110 336 -18 3 B> 16 315 4 111 342 -12 37 B> 315 4 112 343 -13 37 <B 1 314 4 113 350 -20 <B 18 314 4 114 351 -21 <A 2 18 314 4 115 352 -20 1 B> 2 18 314 4 116 353 -21 1 <A 4 18 314 4 117 354 -20 2 A> 4 18 314 4 118 355 -19 22 A> 18 314 4 119 363 -11 210 A> 314 4 120 364 -12 210 <A 314 4 121 374 -22 <A 110 314 4 122 375 -21 1 B> 110 314 4 123 385 -11 1 310 B> 314 4 124 386 -12 1 310 <B 1 313 4 125 396 -22 1 <B 111 313 4 126 397 -21 3 B> 111 313 4 127 408 -10 312 B> 313 4 128 409 -11 312 <B 1 312 4 129 421 -23 <B 113 312 4 130 422 -24 <A 2 113 312 4 131 423 -23 1 B> 2 113 312 4 132 424 -24 1 <A 4 113 312 4 133 425 -23 2 A> 4 113 312 4 134 426 -22 22 A> 113 312 4 135 439 -9 215 A> 312 4 136 440 -10 215 <A 312 4 137 455 -25 <A 115 312 4 138 456 -24 1 B> 115 312 4 139 471 -9 1 315 B> 312 4 140 472 -10 1 315 <B 1 311 4 141 487 -25 1 <B 116 311 4 142 488 -24 3 B> 116 311 4 143 504 -8 317 B> 311 4 144 505 -9 317 <B 1 310 4 145 522 -26 <B 118 310 4 146 523 -27 <A 2 118 310 4 147 524 -26 1 B> 2 118 310 4 148 525 -27 1 <A 4 118 310 4 149 526 -26 2 A> 4 118 310 4 150 527 -25 22 A> 118 310 4 151 545 -7 220 A> 310 4 152 546 -8 220 <A 310 4 153 566 -28 <A 120 310 4 154 567 -27 1 B> 120 310 4 155 587 -7 1 320 B> 310 4 156 588 -8 1 320 <B 1 39 4 157 608 -28 1 <B 121 39 4 158 609 -27 3 B> 121 39 4 159 630 -6 322 B> 39 4 160 631 -7 322 <B 1 38 4 161 653 -29 <B 123 38 4 162 654 -30 <A 2 123 38 4 163 655 -29 1 B> 2 123 38 4 164 656 -30 1 <A 4 123 38 4 165 657 -29 2 A> 4 123 38 4 166 658 -28 22 A> 123 38 4 167 681 -5 225 A> 38 4 168 682 -6 225 <A 38 4 169 707 -31 <A 125 38 4 170 708 -30 1 B> 125 38 4 171 733 -5 1 325 B> 38 4 172 734 -6 1 325 <B 1 37 4 173 759 -31 1 <B 126 37 4 174 760 -30 3 B> 126 37 4 175 786 -4 327 B> 37 4 176 787 -5 327 <B 1 36 4 177 814 -32 <B 128 36 4 178 815 -33 <A 2 128 36 4 179 816 -32 1 B> 2 128 36 4 180 817 -33 1 <A 4 128 36 4 181 818 -32 2 A> 4 128 36 4 182 819 -31 22 A> 128 36 4 183 847 -3 230 A> 36 4 184 848 -4 230 <A 36 4 185 878 -34 <A 130 36 4 186 879 -33 1 B> 130 36 4 187 909 -3 1 330 B> 36 4 188 910 -4 1 330 <B 1 35 4 189 940 -34 1 <B 131 35 4 190 941 -33 3 B> 131 35 4 191 972 -2 332 B> 35 4 192 973 -3 332 <B 1 34 4 193 1005 -35 <B 133 34 4 194 1006 -36 <A 2 133 34 4 195 1007 -35 1 B> 2 133 34 4 196 1008 -36 1 <A 4 133 34 4 197 1009 -35 2 A> 4 133 34 4 198 1010 -34 22 A> 133 34 4 199 1043 -1 235 A> 34 4 200 1044 -2 235 <A 34 4 Lines: 201 Top steps: 200 Macro steps: 200 Basic steps: 1044 Tape index: -2 nonzeros: 40 log10(nonzeros): 1.602 log10(steps ): 3.019
Input to awk program: gohalt 1 nbs 5 T 2-state 5-symbol #e from T.J. & S. Ligocki 5T 1RB 2RA 1LA 3LA 2RA 2LA 3RB 4LA 1LB 1RH : 114,668,733 9,392,084,729,807,219 L 44 M 201 pref sim machv Lig25_e just simple machv Lig25_e-r with repetitions reduced machv Lig25_e-1 with tape symbol exponents machv Lig25_e-m as 1-macro machine machv Lig25_e-a as 1-macro machine with pure additive config-TRs iam Lig25_e-m mtype 1 mmtyp 1 r 1 H 1 mac 0 E 2 sympr HM 1 date Tue Jul 6 22:12:43 CEST 2010 edate Tue Jul 6 22:12:44 CEST 2010 bnspeed 1Start: Tue Jul 6 22:12:43 CEST 2010
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;