Comment: This TM produces 114,668,733 nonzeros in 9,392,084,729,807,219 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | 1RB | 2RA | 1LA | 3LA | 2RA | 1 | right | B | 2 | right | A | 1 | left | A | 3 | left | A | 2 | right | A |
B | 2LA | 3RB | 4LA | 1LB | 1RH | 2 | left | A | 3 | right | B | 4 | left | A | 1 | left | B | 1 | right | H |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 2 3 1 2 A> 2 4 0 2 <A 1 5 -1 <A 1 1 6 0 1 B> 1 1 + 8 2 1 3 3 B> 9 1 1 3 3 <A 2 + 11 -1 1 <A 3 3 2 12 0 2 A> 3 3 2 13 -1 2 <A 3 3 2 14 -2 <A 1 3 3 2 15 -1 1 B> 1 3 3 2 16 0 1 3 B> 3 3 2 17 -1 1 3 <B 1 3 2 18 -2 1 <B 1 1 3 2 19 -1 3 B> 1 1 3 2 + 21 1 33 B> 3 2 22 0 33 <B 1 2 + 25 -3 <B 14 2 26 -4 <A 2 14 2 27 -3 1 B> 2 14 2 28 -4 1 <A 4 14 2 29 -3 2 A> 4 14 2 30 -2 2 2 A> 14 2 + 34 2 26 A> 2 35 1 26 <A 1 + 41 -5 <A 17 42 -4 1 B> 17 + 49 3 1 37 B> 50 2 1 37 <A 2 + 57 -5 1 <A 37 2 58 -4 2 A> 37 2 59 -5 2 <A 37 2 60 -6 <A 1 37 2 61 -5 1 B> 1 37 2 62 -4 1 3 B> 37 2 63 -5 1 3 <B 1 36 2 64 -6 1 <B 1 1 36 2 65 -5 3 B> 1 1 36 2 + 67 -3 33 B> 36 2 68 -4 33 <B 1 35 2 + 71 -7 <B 14 35 2 72 -8 <A 2 14 35 2 73 -7 1 B> 2 14 35 2 74 -8 1 <A 4 14 35 2 75 -7 2 A> 4 14 35 2 76 -6 2 2 A> 14 35 2 + 80 -2 26 A> 35 2 81 -3 26 <A 35 2 + 87 -9 <A 16 35 2 88 -8 1 B> 16 35 2 + 94 -2 1 36 B> 35 2 95 -3 1 36 <B 1 34 2 + 101 -9 1 <B 17 34 2 102 -8 3 B> 17 34 2 + 109 -1 38 B> 34 2 110 -2 38 <B 1 33 2 + 118 -10 <B 19 33 2 119 -11 <A 2 19 33 2 120 -10 1 B> 2 19 33 2 121 -11 1 <A 4 19 33 2 122 -10 2 A> 4 19 33 2 123 -9 2 2 A> 19 33 2 + 132 0 211 A> 33 2 133 -1 211 <A 33 2 + 144 -12 <A 111 33 2 145 -11 1 B> 111 33 2 + 156 0 1 311 B> 33 2 157 -1 1 311 <B 1 3 3 2 + 168 -12 1 <B 112 3 3 2 169 -11 3 B> 112 3 3 2 + 181 1 313 B> 3 3 2 182 0 313 <B 1 3 2 + 195 -13 <B 114 3 2 196 -14 <A 2 114 3 2 197 -13 1 B> 2 114 3 2 198 -14 1 <A 4 114 3 2 199 -13 2 A> 4 114 3 2 200 -12 2 2 A> 114 3 2 + 214 2 216 A> 3 2 215 1 216 <A 3 2 + 231 -15 <A 116 3 2 232 -14 1 B> 116 3 2 + 248 2 1 316 B> 3 2 249 1 1 316 <B 1 2 + 265 -15 1 <B 117 2 266 -14 3 B> 117 2 + 283 3 318 B> 2 284 2 318 <A 4 + 302 -16 <A 318 4 303 -15 1 B> 318 4 304 -16 1 <B 1 317 4 305 -15 3 B> 1 317 4 306 -14 3 3 B> 317 4 307 -15 3 3 <B 1 316 4 + 309 -17 <B 13 316 4 310 -18 <A 2 13 316 4 311 -17 1 B> 2 13 316 4 312 -18 1 <A 4 13 316 4 313 -17 2 A> 4 13 316 4 314 -16 2 2 A> 13 316 4 + 317 -13 25 A> 316 4 318 -14 25 <A 316 4 + 323 -19 <A 15 316 4 324 -18 1 B> 15 316 4 + 329 -13 1 35 B> 316 4 330 -14 1 35 <B 1 315 4 + 335 -19 1 <B 16 315 4 336 -18 3 B> 16 315 4 + 342 -12 37 B> 315 4 343 -13 37 <B 1 314 4 + 350 -20 <B 18 314 4 351 -21 <A 2 18 314 4 352 -20 1 B> 2 18 314 4 353 -21 1 <A 4 18 314 4 354 -20 2 A> 4 18 314 4 355 -19 2 2 A> 18 314 4 + 363 -11 210 A> 314 4 364 -12 210 <A 314 4 + 374 -22 <A 110 314 4 375 -21 1 B> 110 314 4 + 385 -11 1 310 B> 314 4 386 -12 1 310 <B 1 313 4 + 396 -22 1 <B 111 313 4 397 -21 3 B> 111 313 4 + 408 -10 312 B> 313 4 409 -11 312 <B 1 312 4 + 421 -23 <B 113 312 4 422 -24 <A 2 113 312 4 423 -23 1 B> 2 113 312 4 424 -24 1 <A 4 113 312 4 425 -23 2 A> 4 113 312 4 426 -22 2 2 A> 113 312 4 + 439 -9 215 A> 312 4 440 -10 215 <A 312 4 + 455 -25 <A 115 312 4 456 -24 1 B> 115 312 4 + 471 -9 1 315 B> 312 4 472 -10 1 315 <B 1 311 4 + 487 -25 1 <B 116 311 4 488 -24 3 B> 116 311 4 + 504 -8 317 B> 311 4 505 -9 317 <B 1 310 4 + 522 -26 <B 118 310 4 523 -27 <A 2 118 310 4 524 -26 1 B> 2 118 310 4 525 -27 1 <A 4 118 310 4 526 -26 2 A> 4 118 310 4 527 -25 2 2 A> 118 310 4 + 545 -7 220 A> 310 4 546 -8 220 <A 310 4 + 566 -28 <A 120 310 4 567 -27 1 B> 120 310 4 + 587 -7 1 320 B> 310 4 588 -8 1 320 <B 1 39 4 + 608 -28 1 <B 121 39 4 609 -27 3 B> 121 39 4 + 630 -6 322 B> 39 4 631 -7 322 <B 1 38 4 + 653 -29 <B 123 38 4 654 -30 <A 2 123 38 4 655 -29 1 B> 2 123 38 4 656 -30 1 <A 4 123 38 4 657 -29 2 A> 4 123 38 4 658 -28 2 2 A> 123 38 4 + 681 -5 225 A> 38 4 682 -6 225 <A 38 4 + 707 -31 <A 125 38 4 708 -30 1 B> 125 38 4 + 733 -5 1 325 B> 38 4 734 -6 1 325 <B 1 37 4 + 759 -31 1 <B 126 37 4 760 -30 3 B> 126 37 4 + 786 -4 327 B> 37 4 787 -5 327 <B 1 36 4 + 814 -32 <B 128 36 4 815 -33 <A 2 128 36 4 816 -32 1 B> 2 128 36 4 817 -33 1 <A 4 128 36 4 818 -32 2 A> 4 128 36 4 819 -31 2 2 A> 128 36 4 + 847 -3 230 A> 36 4 848 -4 230 <A 36 4 + 878 -34 <A 130 36 4 879 -33 1 B> 130 36 4 + 909 -3 1 330 B> 36 4 910 -4 1 330 <B 1 35 4 + 940 -34 1 <B 131 35 4 941 -33 3 B> 131 35 4 + 972 -2 332 B> 35 4 973 -3 332 <B 1 34 4 + 1005 -35 <B 133 34 4 1006 -36 <A 2 133 34 4 1007 -35 1 B> 2 133 34 4 1008 -36 1 <A 4 133 34 4 1009 -35 2 A> 4 133 34 4 1010 -34 2 2 A> 133 34 4 + 1043 -1 235 A> 34 4 1044 -2 235 <A 34 4 After 1044 steps (201 lines): state = A. Produced 40 nonzeros. Tape index -2, scanned [-36 .. 3].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 396 | 26 | 171 | 149 | 39 | 11 | 0 | 2 | 3 | 9 | 29 |
B | 648 | 14 | 313 | 12 | 309 | 1 | 6 | 27 | 16 |