2-state 5-symbol #e from T.J. & S. Ligocki

Comment: This TM produces 114,668,733 nonzeros in 9,392,084,729,807,219 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 2RA 1LA 3LA 2RA 1 right B 2 right A 1 left A 3 left A 2 right A
B 2LA 3RB 4LA 1LB 1RH 2 left A 3 right B 4 left A 1 left B 1 right H
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     0  1 <A 2
     3     1  2 A> 2
     4     0  2 <A 1
     5    -1  <A 1 1
     6     0  1 B> 1 1
+    8     2  1 3 3 B>
     9     1  1 3 3 <A 2
+   11    -1  1 <A 3 3 2
    12     0  2 A> 3 3 2
    13    -1  2 <A 3 3 2
    14    -2  <A 1 3 3 2
    15    -1  1 B> 1 3 3 2
    16     0  1 3 B> 3 3 2
    17    -1  1 3 <B 1 3 2
    18    -2  1 <B 1 1 3 2
    19    -1  3 B> 1 1 3 2
+   21     1  33 B> 3 2
    22     0  33 <B 1 2
+   25    -3  <B 14 2
    26    -4  <A 2 14 2
    27    -3  1 B> 2 14 2
    28    -4  1 <A 4 14 2
    29    -3  2 A> 4 14 2
    30    -2  2 2 A> 14 2
+   34     2  26 A> 2
    35     1  26 <A 1
+   41    -5  <A 17
    42    -4  1 B> 17
+   49     3  1 37 B>
    50     2  1 37 <A 2
+   57    -5  1 <A 37 2
    58    -4  2 A> 37 2
    59    -5  2 <A 37 2
    60    -6  <A 1 37 2
    61    -5  1 B> 1 37 2
    62    -4  1 3 B> 37 2
    63    -5  1 3 <B 1 36 2
    64    -6  1 <B 1 1 36 2
    65    -5  3 B> 1 1 36 2
+   67    -3  33 B> 36 2
    68    -4  33 <B 1 35 2
+   71    -7  <B 14 35 2
    72    -8  <A 2 14 35 2
    73    -7  1 B> 2 14 35 2
    74    -8  1 <A 4 14 35 2
    75    -7  2 A> 4 14 35 2
    76    -6  2 2 A> 14 35 2
+   80    -2  26 A> 35 2
    81    -3  26 <A 35 2
+   87    -9  <A 16 35 2
    88    -8  1 B> 16 35 2
+   94    -2  1 36 B> 35 2
    95    -3  1 36 <B 1 34 2
+  101    -9  1 <B 17 34 2
   102    -8  3 B> 17 34 2
+  109    -1  38 B> 34 2
   110    -2  38 <B 1 33 2
+  118   -10  <B 19 33 2
   119   -11  <A 2 19 33 2
   120   -10  1 B> 2 19 33 2
   121   -11  1 <A 4 19 33 2
   122   -10  2 A> 4 19 33 2
   123    -9  2 2 A> 19 33 2
+  132     0  211 A> 33 2
   133    -1  211 <A 33 2
+  144   -12  <A 111 33 2
   145   -11  1 B> 111 33 2
+  156     0  1 311 B> 33 2
   157    -1  1 311 <B 1 3 3 2
+  168   -12  1 <B 112 3 3 2
   169   -11  3 B> 112 3 3 2
+  181     1  313 B> 3 3 2
   182     0  313 <B 1 3 2
+  195   -13  <B 114 3 2
   196   -14  <A 2 114 3 2
   197   -13  1 B> 2 114 3 2
   198   -14  1 <A 4 114 3 2
   199   -13  2 A> 4 114 3 2
   200   -12  2 2 A> 114 3 2
+  214     2  216 A> 3 2
   215     1  216 <A 3 2
+  231   -15  <A 116 3 2
   232   -14  1 B> 116 3 2
+  248     2  1 316 B> 3 2
   249     1  1 316 <B 1 2
+  265   -15  1 <B 117 2
   266   -14  3 B> 117 2
+  283     3  318 B> 2
   284     2  318 <A 4
+  302   -16  <A 318 4
   303   -15  1 B> 318 4
   304   -16  1 <B 1 317 4
   305   -15  3 B> 1 317 4
   306   -14  3 3 B> 317 4
   307   -15  3 3 <B 1 316 4
+  309   -17  <B 13 316 4
   310   -18  <A 2 13 316 4
   311   -17  1 B> 2 13 316 4
   312   -18  1 <A 4 13 316 4
   313   -17  2 A> 4 13 316 4
   314   -16  2 2 A> 13 316 4
+  317   -13  25 A> 316 4
   318   -14  25 <A 316 4
+  323   -19  <A 15 316 4
   324   -18  1 B> 15 316 4
+  329   -13  1 35 B> 316 4
   330   -14  1 35 <B 1 315 4
+  335   -19  1 <B 16 315 4
   336   -18  3 B> 16 315 4
+  342   -12  37 B> 315 4
   343   -13  37 <B 1 314 4
+  350   -20  <B 18 314 4
   351   -21  <A 2 18 314 4
   352   -20  1 B> 2 18 314 4
   353   -21  1 <A 4 18 314 4
   354   -20  2 A> 4 18 314 4
   355   -19  2 2 A> 18 314 4
+  363   -11  210 A> 314 4
   364   -12  210 <A 314 4
+  374   -22  <A 110 314 4
   375   -21  1 B> 110 314 4
+  385   -11  1 310 B> 314 4
   386   -12  1 310 <B 1 313 4
+  396   -22  1 <B 111 313 4
   397   -21  3 B> 111 313 4
+  408   -10  312 B> 313 4
   409   -11  312 <B 1 312 4
+  421   -23  <B 113 312 4
   422   -24  <A 2 113 312 4
   423   -23  1 B> 2 113 312 4
   424   -24  1 <A 4 113 312 4
   425   -23  2 A> 4 113 312 4
   426   -22  2 2 A> 113 312 4
+  439    -9  215 A> 312 4
   440   -10  215 <A 312 4
+  455   -25  <A 115 312 4
   456   -24  1 B> 115 312 4
+  471    -9  1 315 B> 312 4
   472   -10  1 315 <B 1 311 4
+  487   -25  1 <B 116 311 4
   488   -24  3 B> 116 311 4
+  504    -8  317 B> 311 4
   505    -9  317 <B 1 310 4
+  522   -26  <B 118 310 4
   523   -27  <A 2 118 310 4
   524   -26  1 B> 2 118 310 4
   525   -27  1 <A 4 118 310 4
   526   -26  2 A> 4 118 310 4
   527   -25  2 2 A> 118 310 4
+  545    -7  220 A> 310 4
   546    -8  220 <A 310 4
+  566   -28  <A 120 310 4
   567   -27  1 B> 120 310 4
+  587    -7  1 320 B> 310 4
   588    -8  1 320 <B 1 39 4
+  608   -28  1 <B 121 39 4
   609   -27  3 B> 121 39 4
+  630    -6  322 B> 39 4
   631    -7  322 <B 1 38 4
+  653   -29  <B 123 38 4
   654   -30  <A 2 123 38 4
   655   -29  1 B> 2 123 38 4
   656   -30  1 <A 4 123 38 4
   657   -29  2 A> 4 123 38 4
   658   -28  2 2 A> 123 38 4
+  681    -5  225 A> 38 4
   682    -6  225 <A 38 4
+  707   -31  <A 125 38 4
   708   -30  1 B> 125 38 4
+  733    -5  1 325 B> 38 4
   734    -6  1 325 <B 1 37 4
+  759   -31  1 <B 126 37 4
   760   -30  3 B> 126 37 4
+  786    -4  327 B> 37 4
   787    -5  327 <B 1 36 4
+  814   -32  <B 128 36 4
   815   -33  <A 2 128 36 4
   816   -32  1 B> 2 128 36 4
   817   -33  1 <A 4 128 36 4
   818   -32  2 A> 4 128 36 4
   819   -31  2 2 A> 128 36 4
+  847    -3  230 A> 36 4
   848    -4  230 <A 36 4
+  878   -34  <A 130 36 4
   879   -33  1 B> 130 36 4
+  909    -3  1 330 B> 36 4
   910    -4  1 330 <B 1 35 4
+  940   -34  1 <B 131 35 4
   941   -33  3 B> 131 35 4
+  972    -2  332 B> 35 4
   973    -3  332 <B 1 34 4
+ 1005   -35  <B 133 34 4
  1006   -36  <A 2 133 34 4
  1007   -35  1 B> 2 133 34 4
  1008   -36  1 <A 4 133 34 4
  1009   -35  2 A> 4 133 34 4
  1010   -34  2 2 A> 133 34 4
+ 1043    -1  235 A> 34 4
  1044    -2  235 <A 34 4

After 1044 steps (201 lines): state = A.
Produced     40 nonzeros.
Tape index -2, scanned [-36 .. 3].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 396 26 171 149 39 11 0 2 3 9 29
B 648 14 313 12 309   1 6 27 16  
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:43 CEST 2010