2-state 5-symbol #d from T.J. & S. Ligocki

Comment: This TM produces 36,543,045 nonzeros in 417,310,842,648,366 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 2RA 1LA 1LB 3LB 1 right B 2 right A 1 left A 1 left B 3 left B
B 2LA 3RB 1RH 4RA 1LA 2 left A 3 right B 1 right H 4 right A 1 left A
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-bck-macro machine.
The same TM as 1-bck-bck-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . . 0
     1    1 B . . . 10
     2    0 A . . . 12
     3    1 A . . . 22
     4    0 A . . . 21
     5   -1 A . . .011
     6    0 B . . .111
     7    1 B . . .131
     8    2 B . . .1330
     9    1 A . . .1332
    10    0 B . . .1312
    11    1 A . . .1412
    12    2 A . . .1422
    13    1 A . . .1421
    14    0 A . . .1411
    15   -1 B . . .1311
    16    0 B . . .3311
    17    1 A . . .3411
    18    2 A . . .3421
    19    3 A . . .34220
    20    4 B . . .342210
    21    3 A . . .342212
    22    4 A . . .342222
    23    3 A . . .342221
    24    2 A . . .342211
    25    1 A . . .342111
    26    0 A . . .341111
    27   -1 B . . .331111
    28    0 A . . .431111
    29   -1 B . . .411111
    30   -2 A . . 0111111
    31   -1 B . . 1111111
    32    0 B . . 1311111
    33    1 B . . 1331111
    34    2 B . . 1333111
    35    3 B . . 1333311
    36    4 B . . 1333331
    37    5 B . . 13333330
    38    4 A . . 13333332
    39    3 B . . 13333312
    40    4 A . . 13333412
    41    5 A . . 13333422
    42    4 A . . 13333421
    43    3 A . . 13333411
    44    2 B . . 13333311
    45    3 A . . 13334311
    46    2 B . . 13334111
    47    1 A . . 13331111
    48    0 B . . 13311111
    49    1 A . . 13411111
    50    2 A . . 13421111
    51    3 A . . 13422111
    52    4 A . . 13422211
    53    5 A . . 13422221
    54    6 A . . 134222220
    55    7 B . . 1342222210
    56    6 A . . 1342222212
    57    7 A . . 1342222222
    58    6 A . . 1342222221
    59    5 A . . 1342222211
    60    4 A . . 1342222111
    61    3 A . . 1342221111
    62    2 A . . 1342211111
    63    1 A . . 1342111111
    64    0 A . . 1341111111
    65   -1 B . . 1331111111
    66    0 A . . 1431111111
    67   -1 B . . 1411111111
    68   -2 A . . 1111111111
    69   -1 A . . 2111111111
    70    0 A . . 2211111111
    71    1 A . . 2221111111
    72    2 A . . 2222111111
    73    3 A . . 2222211111
    74    4 A . . 2222221111
    75    5 A . . 2222222111
    76    6 A . . 2222222211
    77    7 A . . 2222222221
    78    8 A . . 22222222220
    79    9 B . . 222222222210
    80    8 A . . 222222222212
    81    9 A . . 222222222222
    82    8 A . . 222222222221
    83    7 A . . 222222222211
    84    6 A . . 222222222111
    85    5 A . . 222222221111
    86    4 A . . 222222211111
    87    3 A . . 222222111111
    88    2 A . . 222221111111
    89    1 A . . 222211111111
    90    0 A . . 222111111111
    91   -1 A . . 221111111111
    92   -2 A . . 211111111111
    93   -3 A . .0111111111111
    94   -2 B . .1111111111111
    95   -1 B . .1311111111111
    96    0 B . .1331111111111
    97    1 B . .1333111111111
    98    2 B . .1333311111111
    99    3 B . .1333331111111
   100    4 B . .1333333111111
   101    5 B . .1333333311111
   102    6 B . .1333333331111
   103    7 B . .1333333333111
   104    8 B . .1333333333311
   105    9 B . .1333333333331
   106   10 B . .13333333333330
   107    9 A . .13333333333332
   108    8 B . .13333333333312
   109    9 A . .13333333333412
   110   10 A . .13333333333422
   111    9 A . .13333333333421
   112    8 A . .13333333333411
   113    7 B . .13333333333311
   114    8 A . .13333333334311
   115    7 B . .13333333334111
   116    6 A . .13333333331111
   117    5 B . .13333333311111
   118    6 A . .13333333411111
   119    7 A . .13333333421111
   120    8 A . .13333333422111
   121    9 A . .13333333422211
   122   10 A . .13333333422221
   123   11 A . .133333334222220
   124   12 B . .1333333342222210
   125   11 A . .1333333342222212
   126   12 A . .1333333342222222
   127   11 A . .1333333342222221
   128   10 A . .1333333342222211
   129    9 A . .1333333342222111
   130    8 A . .1333333342221111
   131    7 A . .1333333342211111
   132    6 A . .1333333342111111
   133    5 A . .1333333341111111
   134    4 B . .1333333331111111
   135    5 A . .1333333431111111
   136    4 B . .1333333411111111
   137    3 A . .1333333111111111
   138    2 B . .1333331111111111
   139    3 A . .1333341111111111
   140    4 A . .1333342111111111
   141    5 A . .1333342211111111
   142    6 A . .1333342221111111
   143    7 A . .1333342222111111
   144    8 A . .1333342222211111
   145    9 A . .1333342222221111
   146   10 A . .1333342222222111
   147   11 A . .1333342222222211
   148   12 A . .1333342222222221
   149   13 A . .13333422222222220
   150   14 B . .133334222222222210
   151   13 A . .133334222222222212
   152   14 A . .133334222222222222
   153   13 A . .133334222222222221
   154   12 A . .133334222222222211
   155   11 A . .133334222222222111
   156   10 A . .133334222222221111
   157    9 A . .133334222222211111
   158    8 A . .133334222222111111
   159    7 A . .133334222221111111
   160    6 A . .133334222211111111
   161    5 A . .133334222111111111
   162    4 A . .133334221111111111
   163    3 A . .133334211111111111
   164    2 A . .133334111111111111
   165    1 B . .133333111111111111
   166    2 A . .133343111111111111
   167    1 B . .133341111111111111
   168    0 A . .133311111111111111
   169   -1 B . .133111111111111111
   170    0 A . .134111111111111111
   171    1 A . .134211111111111111
   172    2 A . .134221111111111111
   173    3 A . .134222111111111111
   174    4 A . .134222211111111111
   175    5 A . .134222221111111111
   176    6 A . .134222222111111111
   177    7 A . .134222222211111111
   178    8 A . .134222222221111111
   179    9 A . .134222222222111111
   180   10 A . .134222222222211111
   181   11 A . .134222222222221111
   182   12 A . .134222222222222111
   183   13 A . .134222222222222211
   184   14 A . .134222222222222221
   185   15 A . .1342222222222222220
   186   16 B . .13422222222222222210
   187   15 A . .13422222222222222212
   188   16 A . .13422222222222222222
   189   15 A . .13422222222222222221
   190   14 A . .13422222222222222211
   191   13 A . .13422222222222222111
   192   12 A . .13422222222222221111
   193   11 A . .13422222222222211111
   194   10 A . .13422222222222111111
   195    9 A . .13422222222221111111
   196    8 A . .13422222222211111111
   197    7 A . .13422222222111111111
   198    6 A . .13422222221111111111
   199    5 A . .13422222211111111111
   200    4 A . .13422222111111111111

After 200 steps (201 lines): state = A.
Produced     20 nonzeros.
Tape index 4, scanned [-3 .. 16].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 149 10 57 62 13 7 0 2 3 9 14
B 51 10 21   14 6 1 6   10 29
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-bck-macro machine.
The same TM as 1-bck-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:42 CEST 2010