2-state 5-symbol #d from T.J. & S. Ligocki

Comment: This TM produces 36,543,045 nonzeros in 417,310,842,648,366 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 2RA 1LA 1LB 3LB 1 right B 2 right A 1 left A 1 left B 3 left B
B 2LA 3RB 1RH 4RA 1LA 2 left A 3 right B 1 right H 4 right A 1 left A
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-bck-bck-macro machine.
The same TM as 1-bck-bck-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     0  1 <A 2
     3     1  2 A> 2
     4     0  2 <A 1
     5    -1  <A 1 1
     6     0  1 B> 1 1
+    8     2  1 3 3 B>
     9     1  1 3 3 <A 2
    10     0  1 3 <B 1 2
    11     1  1 4 A> 1 2
    12     2  1 4 2 A> 2
    13     1  1 4 2 <A 1
    14     0  1 4 <A 1 1
    15    -1  1 <B 3 1 1
    16     0  3 B> 3 1 1
    17     1  3 4 A> 1 1
+   19     3  3 4 2 2 A>
    20     4  3 4 2 2 1 B>
    21     3  3 4 2 2 1 <A 2
    22     4  3 4 23 A> 2
    23     3  3 4 23 <A 1
+   26     0  3 4 <A 14
    27    -1  3 <B 3 14
    28     0  4 A> 3 14
    29    -1  4 <B 15
    30    -2  <A 16
    31    -1  1 B> 16
+   37     5  1 36 B>
    38     4  1 36 <A 2
    39     3  1 35 <B 1 2
    40     4  1 34 4 A> 1 2
    41     5  1 34 4 2 A> 2
    42     4  1 34 4 2 <A 1
    43     3  1 34 4 <A 1 1
    44     2  1 34 <B 3 1 1
    45     3  1 33 4 A> 3 1 1
    46     2  1 33 4 <B 13
    47     1  1 33 <A 14
    48     0  1 3 3 <B 15
    49     1  1 3 4 A> 15
+   54     6  1 3 4 25 A>
    55     7  1 3 4 25 1 B>
    56     6  1 3 4 25 1 <A 2
    57     7  1 3 4 26 A> 2
    58     6  1 3 4 26 <A 1
+   64     0  1 3 4 <A 17
    65    -1  1 3 <B 3 17
    66     0  1 4 A> 3 17
    67    -1  1 4 <B 18
    68    -2  1 <A 19
    69    -1  2 A> 19
+   78     8  210 A>
    79     9  210 1 B>
    80     8  210 1 <A 2
    81     9  211 A> 2
    82     8  211 <A 1
+   93    -3  <A 112
    94    -2  1 B> 112
+  106    10  1 312 B>
   107     9  1 312 <A 2
   108     8  1 311 <B 1 2
   109     9  1 310 4 A> 1 2
   110    10  1 310 4 2 A> 2
   111     9  1 310 4 2 <A 1
   112     8  1 310 4 <A 1 1
   113     7  1 310 <B 3 1 1
   114     8  1 39 4 A> 3 1 1
   115     7  1 39 4 <B 13
   116     6  1 39 <A 14
   117     5  1 38 <B 15
   118     6  1 37 4 A> 15
+  123    11  1 37 4 25 A>
   124    12  1 37 4 25 1 B>
   125    11  1 37 4 25 1 <A 2
   126    12  1 37 4 26 A> 2
   127    11  1 37 4 26 <A 1
+  133     5  1 37 4 <A 17
   134     4  1 37 <B 3 17
   135     5  1 36 4 A> 3 17
   136     4  1 36 4 <B 18
   137     3  1 36 <A 19
   138     2  1 35 <B 110
   139     3  1 34 4 A> 110
+  149    13  1 34 4 210 A>
   150    14  1 34 4 210 1 B>
   151    13  1 34 4 210 1 <A 2
   152    14  1 34 4 211 A> 2
   153    13  1 34 4 211 <A 1
+  164     2  1 34 4 <A 112
   165     1  1 34 <B 3 112
   166     2  1 33 4 A> 3 112
   167     1  1 33 4 <B 113
   168     0  1 33 <A 114
   169    -1  1 3 3 <B 115
   170     0  1 3 4 A> 115
+  185    15  1 3 4 215 A>
   186    16  1 3 4 215 1 B>
   187    15  1 3 4 215 1 <A 2
   188    16  1 3 4 216 A> 2
   189    15  1 3 4 216 <A 1
+  205    -1  1 3 4 <A 117
   206    -2  1 3 <B 3 117
   207    -1  1 4 A> 3 117
   208    -2  1 4 <B 118
   209    -3  1 <A 119
   210    -2  2 A> 119
+  229    17  220 A>
   230    18  220 1 B>
   231    17  220 1 <A 2
   232    18  221 A> 2
   233    17  221 <A 1
+  254    -4  <A 122
   255    -3  1 B> 122
+  277    19  1 322 B>
   278    18  1 322 <A 2
   279    17  1 321 <B 1 2
   280    18  1 320 4 A> 1 2
   281    19  1 320 4 2 A> 2
   282    18  1 320 4 2 <A 1
   283    17  1 320 4 <A 1 1
   284    16  1 320 <B 3 1 1
   285    17  1 319 4 A> 3 1 1
   286    16  1 319 4 <B 13
   287    15  1 319 <A 14
   288    14  1 318 <B 15
   289    15  1 317 4 A> 15
+  294    20  1 317 4 25 A>
   295    21  1 317 4 25 1 B>
   296    20  1 317 4 25 1 <A 2
   297    21  1 317 4 26 A> 2
   298    20  1 317 4 26 <A 1
+  304    14  1 317 4 <A 17
   305    13  1 317 <B 3 17
   306    14  1 316 4 A> 3 17
   307    13  1 316 4 <B 18
   308    12  1 316 <A 19
   309    11  1 315 <B 110
   310    12  1 314 4 A> 110
+  320    22  1 314 4 210 A>
   321    23  1 314 4 210 1 B>
   322    22  1 314 4 210 1 <A 2
   323    23  1 314 4 211 A> 2
   324    22  1 314 4 211 <A 1
+  335    11  1 314 4 <A 112
   336    10  1 314 <B 3 112
   337    11  1 313 4 A> 3 112
   338    10  1 313 4 <B 113
   339     9  1 313 <A 114
   340     8  1 312 <B 115
   341     9  1 311 4 A> 115
+  356    24  1 311 4 215 A>
   357    25  1 311 4 215 1 B>
   358    24  1 311 4 215 1 <A 2
   359    25  1 311 4 216 A> 2
   360    24  1 311 4 216 <A 1
+  376     8  1 311 4 <A 117
   377     7  1 311 <B 3 117
   378     8  1 310 4 A> 3 117
   379     7  1 310 4 <B 118
   380     6  1 310 <A 119
   381     5  1 39 <B 120
   382     6  1 38 4 A> 120
+  402    26  1 38 4 220 A>
   403    27  1 38 4 220 1 B>
   404    26  1 38 4 220 1 <A 2
   405    27  1 38 4 221 A> 2
   406    26  1 38 4 221 <A 1
+  427     5  1 38 4 <A 122
   428     4  1 38 <B 3 122
   429     5  1 37 4 A> 3 122
   430     4  1 37 4 <B 123
   431     3  1 37 <A 124
   432     2  1 36 <B 125
   433     3  1 35 4 A> 125
+  458    28  1 35 4 225 A>
   459    29  1 35 4 225 1 B>
   460    28  1 35 4 225 1 <A 2
   461    29  1 35 4 226 A> 2
   462    28  1 35 4 226 <A 1
+  488     2  1 35 4 <A 127
   489     1  1 35 <B 3 127
   490     2  1 34 4 A> 3 127
   491     1  1 34 4 <B 128
   492     0  1 34 <A 129
   493    -1  1 33 <B 130
   494     0  1 3 3 4 A> 130
+  524    30  1 3 3 4 230 A>
   525    31  1 3 3 4 230 1 B>
   526    30  1 3 3 4 230 1 <A 2
   527    31  1 3 3 4 231 A> 2
   528    30  1 3 3 4 231 <A 1
+  559    -1  1 3 3 4 <A 132
   560    -2  1 3 3 <B 3 132
   561    -1  1 3 4 A> 3 132
   562    -2  1 3 4 <B 133
   563    -3  1 3 <A 134
   564    -4  1 <B 135
   565    -3  3 B> 135
+  600    32  336 B>
   601    31  336 <A 2

After 601 steps (201 lines): state = A.
Produced     37 nonzeros.
Tape index 31, scanned [-4 .. 32].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 460 18 190 208 29 15 0 2 3 9 14
B 141 19 79   29 14 1 6   10 29
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 1-bck-bck-macro machine.
The same TM as 1-bck-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:42 CEST 2010