Comment: This TM produces 36,543,045 nonzeros in 417,310,842,648,366 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | 1RB | 2RA | 1LA | 1LB | 3LB | 1 | right | B | 2 | right | A | 1 | left | A | 1 | left | B | 3 | left | B |
| B | 2LA | 3RB | 1RH | 4RA | 1LA | 2 | left | A | 3 | right | B | 1 | right | H | 4 | right | A | 1 | left | A |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-bck-bck-macro machine.
The same TM as 1-bck-bck-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A 2
3 1 2 A> 2
4 0 2 <A 1
5 -1 <A 1 1
6 0 1 B> 1 1
+ 8 2 1 3 3 B>
9 1 1 3 3 <A 2
10 0 1 3 <B 1 2
11 1 1 4 A> 1 2
12 2 1 4 2 A> 2
13 1 1 4 2 <A 1
14 0 1 4 <A 1 1
15 -1 1 <B 3 1 1
16 0 3 B> 3 1 1
17 1 3 4 A> 1 1
+ 19 3 3 4 2 2 A>
20 4 3 4 2 2 1 B>
21 3 3 4 2 2 1 <A 2
22 4 3 4 23 A> 2
23 3 3 4 23 <A 1
+ 26 0 3 4 <A 14
27 -1 3 <B 3 14
28 0 4 A> 3 14
29 -1 4 <B 15
30 -2 <A 16
31 -1 1 B> 16
+ 37 5 1 36 B>
38 4 1 36 <A 2
39 3 1 35 <B 1 2
40 4 1 34 4 A> 1 2
41 5 1 34 4 2 A> 2
42 4 1 34 4 2 <A 1
43 3 1 34 4 <A 1 1
44 2 1 34 <B 3 1 1
45 3 1 33 4 A> 3 1 1
46 2 1 33 4 <B 13
47 1 1 33 <A 14
48 0 1 3 3 <B 15
49 1 1 3 4 A> 15
+ 54 6 1 3 4 25 A>
55 7 1 3 4 25 1 B>
56 6 1 3 4 25 1 <A 2
57 7 1 3 4 26 A> 2
58 6 1 3 4 26 <A 1
+ 64 0 1 3 4 <A 17
65 -1 1 3 <B 3 17
66 0 1 4 A> 3 17
67 -1 1 4 <B 18
68 -2 1 <A 19
69 -1 2 A> 19
+ 78 8 210 A>
79 9 210 1 B>
80 8 210 1 <A 2
81 9 211 A> 2
82 8 211 <A 1
+ 93 -3 <A 112
94 -2 1 B> 112
+ 106 10 1 312 B>
107 9 1 312 <A 2
108 8 1 311 <B 1 2
109 9 1 310 4 A> 1 2
110 10 1 310 4 2 A> 2
111 9 1 310 4 2 <A 1
112 8 1 310 4 <A 1 1
113 7 1 310 <B 3 1 1
114 8 1 39 4 A> 3 1 1
115 7 1 39 4 <B 13
116 6 1 39 <A 14
117 5 1 38 <B 15
118 6 1 37 4 A> 15
+ 123 11 1 37 4 25 A>
124 12 1 37 4 25 1 B>
125 11 1 37 4 25 1 <A 2
126 12 1 37 4 26 A> 2
127 11 1 37 4 26 <A 1
+ 133 5 1 37 4 <A 17
134 4 1 37 <B 3 17
135 5 1 36 4 A> 3 17
136 4 1 36 4 <B 18
137 3 1 36 <A 19
138 2 1 35 <B 110
139 3 1 34 4 A> 110
+ 149 13 1 34 4 210 A>
150 14 1 34 4 210 1 B>
151 13 1 34 4 210 1 <A 2
152 14 1 34 4 211 A> 2
153 13 1 34 4 211 <A 1
+ 164 2 1 34 4 <A 112
165 1 1 34 <B 3 112
166 2 1 33 4 A> 3 112
167 1 1 33 4 <B 113
168 0 1 33 <A 114
169 -1 1 3 3 <B 115
170 0 1 3 4 A> 115
+ 185 15 1 3 4 215 A>
186 16 1 3 4 215 1 B>
187 15 1 3 4 215 1 <A 2
188 16 1 3 4 216 A> 2
189 15 1 3 4 216 <A 1
+ 205 -1 1 3 4 <A 117
206 -2 1 3 <B 3 117
207 -1 1 4 A> 3 117
208 -2 1 4 <B 118
209 -3 1 <A 119
210 -2 2 A> 119
+ 229 17 220 A>
230 18 220 1 B>
231 17 220 1 <A 2
232 18 221 A> 2
233 17 221 <A 1
+ 254 -4 <A 122
255 -3 1 B> 122
+ 277 19 1 322 B>
278 18 1 322 <A 2
279 17 1 321 <B 1 2
280 18 1 320 4 A> 1 2
281 19 1 320 4 2 A> 2
282 18 1 320 4 2 <A 1
283 17 1 320 4 <A 1 1
284 16 1 320 <B 3 1 1
285 17 1 319 4 A> 3 1 1
286 16 1 319 4 <B 13
287 15 1 319 <A 14
288 14 1 318 <B 15
289 15 1 317 4 A> 15
+ 294 20 1 317 4 25 A>
295 21 1 317 4 25 1 B>
296 20 1 317 4 25 1 <A 2
297 21 1 317 4 26 A> 2
298 20 1 317 4 26 <A 1
+ 304 14 1 317 4 <A 17
305 13 1 317 <B 3 17
306 14 1 316 4 A> 3 17
307 13 1 316 4 <B 18
308 12 1 316 <A 19
309 11 1 315 <B 110
310 12 1 314 4 A> 110
+ 320 22 1 314 4 210 A>
321 23 1 314 4 210 1 B>
322 22 1 314 4 210 1 <A 2
323 23 1 314 4 211 A> 2
324 22 1 314 4 211 <A 1
+ 335 11 1 314 4 <A 112
336 10 1 314 <B 3 112
337 11 1 313 4 A> 3 112
338 10 1 313 4 <B 113
339 9 1 313 <A 114
340 8 1 312 <B 115
341 9 1 311 4 A> 115
+ 356 24 1 311 4 215 A>
357 25 1 311 4 215 1 B>
358 24 1 311 4 215 1 <A 2
359 25 1 311 4 216 A> 2
360 24 1 311 4 216 <A 1
+ 376 8 1 311 4 <A 117
377 7 1 311 <B 3 117
378 8 1 310 4 A> 3 117
379 7 1 310 4 <B 118
380 6 1 310 <A 119
381 5 1 39 <B 120
382 6 1 38 4 A> 120
+ 402 26 1 38 4 220 A>
403 27 1 38 4 220 1 B>
404 26 1 38 4 220 1 <A 2
405 27 1 38 4 221 A> 2
406 26 1 38 4 221 <A 1
+ 427 5 1 38 4 <A 122
428 4 1 38 <B 3 122
429 5 1 37 4 A> 3 122
430 4 1 37 4 <B 123
431 3 1 37 <A 124
432 2 1 36 <B 125
433 3 1 35 4 A> 125
+ 458 28 1 35 4 225 A>
459 29 1 35 4 225 1 B>
460 28 1 35 4 225 1 <A 2
461 29 1 35 4 226 A> 2
462 28 1 35 4 226 <A 1
+ 488 2 1 35 4 <A 127
489 1 1 35 <B 3 127
490 2 1 34 4 A> 3 127
491 1 1 34 4 <B 128
492 0 1 34 <A 129
493 -1 1 33 <B 130
494 0 1 3 3 4 A> 130
+ 524 30 1 3 3 4 230 A>
525 31 1 3 3 4 230 1 B>
526 30 1 3 3 4 230 1 <A 2
527 31 1 3 3 4 231 A> 2
528 30 1 3 3 4 231 <A 1
+ 559 -1 1 3 3 4 <A 132
560 -2 1 3 3 <B 3 132
561 -1 1 3 4 A> 3 132
562 -2 1 3 4 <B 133
563 -3 1 3 <A 134
564 -4 1 <B 135
565 -3 3 B> 135
+ 600 32 336 B>
601 31 336 <A 2
After 601 steps (201 lines): state = A.
Produced 37 nonzeros.
Tape index 31, scanned [-4 .. 32].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 460 | 18 | 190 | 208 | 29 | 15 | 0 | 2 | 3 | 9 | 14 |
| B | 141 | 19 | 79 | 29 | 14 | 1 | 6 | 10 | 29 | ||