Comment: This TM produces 36,543,045 nonzeros in 417,310,842,648,366 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | 1RB | 2RA | 1LA | 1LB | 3LB | 1 | right | B | 2 | right | A | 1 | left | A | 1 | left | B | 3 | left | B |
B | 2LA | 3RB | 1RH | 4RA | 1LA | 2 | left | A | 3 | right | B | 1 | right | H | 4 | right | A | 1 | left | A |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-bck-bck-macro machine. The same TM as 1-bck-bck-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 2 3 1 2 A> 2 4 0 2 <A 1 5 -1 <A 1 1 6 0 1 B> 1 1 + 8 2 1 3 3 B> 9 1 1 3 3 <A 2 10 0 1 3 <B 1 2 11 1 1 4 A> 1 2 12 2 1 4 2 A> 2 13 1 1 4 2 <A 1 14 0 1 4 <A 1 1 15 -1 1 <B 3 1 1 16 0 3 B> 3 1 1 17 1 3 4 A> 1 1 + 19 3 3 4 2 2 A> 20 4 3 4 2 2 1 B> 21 3 3 4 2 2 1 <A 2 22 4 3 4 23 A> 2 23 3 3 4 23 <A 1 + 26 0 3 4 <A 14 27 -1 3 <B 3 14 28 0 4 A> 3 14 29 -1 4 <B 15 30 -2 <A 16 31 -1 1 B> 16 + 37 5 1 36 B> 38 4 1 36 <A 2 39 3 1 35 <B 1 2 40 4 1 34 4 A> 1 2 41 5 1 34 4 2 A> 2 42 4 1 34 4 2 <A 1 43 3 1 34 4 <A 1 1 44 2 1 34 <B 3 1 1 45 3 1 33 4 A> 3 1 1 46 2 1 33 4 <B 13 47 1 1 33 <A 14 48 0 1 3 3 <B 15 49 1 1 3 4 A> 15 + 54 6 1 3 4 25 A> 55 7 1 3 4 25 1 B> 56 6 1 3 4 25 1 <A 2 57 7 1 3 4 26 A> 2 58 6 1 3 4 26 <A 1 + 64 0 1 3 4 <A 17 65 -1 1 3 <B 3 17 66 0 1 4 A> 3 17 67 -1 1 4 <B 18 68 -2 1 <A 19 69 -1 2 A> 19 + 78 8 210 A> 79 9 210 1 B> 80 8 210 1 <A 2 81 9 211 A> 2 82 8 211 <A 1 + 93 -3 <A 112 94 -2 1 B> 112 + 106 10 1 312 B> 107 9 1 312 <A 2 108 8 1 311 <B 1 2 109 9 1 310 4 A> 1 2 110 10 1 310 4 2 A> 2 111 9 1 310 4 2 <A 1 112 8 1 310 4 <A 1 1 113 7 1 310 <B 3 1 1 114 8 1 39 4 A> 3 1 1 115 7 1 39 4 <B 13 116 6 1 39 <A 14 117 5 1 38 <B 15 118 6 1 37 4 A> 15 + 123 11 1 37 4 25 A> 124 12 1 37 4 25 1 B> 125 11 1 37 4 25 1 <A 2 126 12 1 37 4 26 A> 2 127 11 1 37 4 26 <A 1 + 133 5 1 37 4 <A 17 134 4 1 37 <B 3 17 135 5 1 36 4 A> 3 17 136 4 1 36 4 <B 18 137 3 1 36 <A 19 138 2 1 35 <B 110 139 3 1 34 4 A> 110 + 149 13 1 34 4 210 A> 150 14 1 34 4 210 1 B> 151 13 1 34 4 210 1 <A 2 152 14 1 34 4 211 A> 2 153 13 1 34 4 211 <A 1 + 164 2 1 34 4 <A 112 165 1 1 34 <B 3 112 166 2 1 33 4 A> 3 112 167 1 1 33 4 <B 113 168 0 1 33 <A 114 169 -1 1 3 3 <B 115 170 0 1 3 4 A> 115 + 185 15 1 3 4 215 A> 186 16 1 3 4 215 1 B> 187 15 1 3 4 215 1 <A 2 188 16 1 3 4 216 A> 2 189 15 1 3 4 216 <A 1 + 205 -1 1 3 4 <A 117 206 -2 1 3 <B 3 117 207 -1 1 4 A> 3 117 208 -2 1 4 <B 118 209 -3 1 <A 119 210 -2 2 A> 119 + 229 17 220 A> 230 18 220 1 B> 231 17 220 1 <A 2 232 18 221 A> 2 233 17 221 <A 1 + 254 -4 <A 122 255 -3 1 B> 122 + 277 19 1 322 B> 278 18 1 322 <A 2 279 17 1 321 <B 1 2 280 18 1 320 4 A> 1 2 281 19 1 320 4 2 A> 2 282 18 1 320 4 2 <A 1 283 17 1 320 4 <A 1 1 284 16 1 320 <B 3 1 1 285 17 1 319 4 A> 3 1 1 286 16 1 319 4 <B 13 287 15 1 319 <A 14 288 14 1 318 <B 15 289 15 1 317 4 A> 15 + 294 20 1 317 4 25 A> 295 21 1 317 4 25 1 B> 296 20 1 317 4 25 1 <A 2 297 21 1 317 4 26 A> 2 298 20 1 317 4 26 <A 1 + 304 14 1 317 4 <A 17 305 13 1 317 <B 3 17 306 14 1 316 4 A> 3 17 307 13 1 316 4 <B 18 308 12 1 316 <A 19 309 11 1 315 <B 110 310 12 1 314 4 A> 110 + 320 22 1 314 4 210 A> 321 23 1 314 4 210 1 B> 322 22 1 314 4 210 1 <A 2 323 23 1 314 4 211 A> 2 324 22 1 314 4 211 <A 1 + 335 11 1 314 4 <A 112 336 10 1 314 <B 3 112 337 11 1 313 4 A> 3 112 338 10 1 313 4 <B 113 339 9 1 313 <A 114 340 8 1 312 <B 115 341 9 1 311 4 A> 115 + 356 24 1 311 4 215 A> 357 25 1 311 4 215 1 B> 358 24 1 311 4 215 1 <A 2 359 25 1 311 4 216 A> 2 360 24 1 311 4 216 <A 1 + 376 8 1 311 4 <A 117 377 7 1 311 <B 3 117 378 8 1 310 4 A> 3 117 379 7 1 310 4 <B 118 380 6 1 310 <A 119 381 5 1 39 <B 120 382 6 1 38 4 A> 120 + 402 26 1 38 4 220 A> 403 27 1 38 4 220 1 B> 404 26 1 38 4 220 1 <A 2 405 27 1 38 4 221 A> 2 406 26 1 38 4 221 <A 1 + 427 5 1 38 4 <A 122 428 4 1 38 <B 3 122 429 5 1 37 4 A> 3 122 430 4 1 37 4 <B 123 431 3 1 37 <A 124 432 2 1 36 <B 125 433 3 1 35 4 A> 125 + 458 28 1 35 4 225 A> 459 29 1 35 4 225 1 B> 460 28 1 35 4 225 1 <A 2 461 29 1 35 4 226 A> 2 462 28 1 35 4 226 <A 1 + 488 2 1 35 4 <A 127 489 1 1 35 <B 3 127 490 2 1 34 4 A> 3 127 491 1 1 34 4 <B 128 492 0 1 34 <A 129 493 -1 1 33 <B 130 494 0 1 3 3 4 A> 130 + 524 30 1 3 3 4 230 A> 525 31 1 3 3 4 230 1 B> 526 30 1 3 3 4 230 1 <A 2 527 31 1 3 3 4 231 A> 2 528 30 1 3 3 4 231 <A 1 + 559 -1 1 3 3 4 <A 132 560 -2 1 3 3 <B 3 132 561 -1 1 3 4 A> 3 132 562 -2 1 3 4 <B 133 563 -3 1 3 <A 134 564 -4 1 <B 135 565 -3 3 B> 135 + 600 32 336 B> 601 31 336 <A 2 After 601 steps (201 lines): state = A. Produced 37 nonzeros. Tape index 31, scanned [-4 .. 32].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 460 | 18 | 190 | 208 | 29 | 15 | 0 | 2 | 3 | 9 | 14 |
B | 141 | 19 | 79 | 29 | 14 | 1 | 6 | 10 | 29 |