Comment: This TM produces 11120 nonzeros in 148,304,214 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | 1RB | 4LA | 1LA | 2LA | 1RA | 1 | right | B | 4 | left | A | 1 | left | A | 2 | left | A | 1 | right | A |
| B | 3LA | 1RH | 1RA | 2RA | 4RB | 3 | left | A | 1 | right | H | 1 | right | A | 2 | right | A | 4 | right | B |
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Step Tpos St Tape contents
0 0 A . . . . . 0
1 1 B . . . . . 10
2 0 A . . . . . 13
3 -1 A . . . . .043
4 0 B . . . . .143
5 1 B . . . . .143
6 2 A . . . . .1420
7 3 B . . . . .14210
8 2 A . . . . .14213
9 1 A . . . . .14243
10 0 A . . . . .14143
11 1 A . . . . .11143
12 0 A . . . . .11443
13 -1 A . . . . .14443
14 -2 A . . . . 044443
15 -1 B . . . . 144443
16 0 B . . . . 144443
17 1 B . . . . 144443
18 2 B . . . . 144443
19 3 B . . . . 144443
20 4 A . . . . 1444420
21 5 B . . . . 14444210
22 4 A . . . . 14444213
23 3 A . . . . 14444243
24 2 A . . . . 14444143
25 3 A . . . . 14441143
26 2 A . . . . 14441443
27 1 A . . . . 14444443
28 2 A . . . . 14414443
29 3 A . . . . 14411443
30 4 A . . . . 14411143
31 5 A . . . . 14411113
32 4 A . . . . 14411112
33 3 A . . . . 14411142
34 2 A . . . . 14411442
35 1 A . . . . 14414442
36 0 A . . . . 14444442
37 1 A . . . . 14144442
38 2 A . . . . 14114442
39 3 A . . . . 14111442
40 4 A . . . . 14111142
41 5 A . . . . 14111112
42 4 A . . . . 14111111
43 3 A . . . . 14111141
44 2 A . . . . 14111441
45 1 A . . . . 14114441
46 0 A . . . . 14144441
47 -1 A . . . . 14444441
48 0 A . . . . 11444441
49 1 A . . . . 11144441
50 2 A . . . . 11114441
51 3 A . . . . 11111441
52 4 A . . . . 11111141
53 5 A . . . . 11111111
54 4 A . . . . 11111114
55 3 A . . . . 11111144
56 2 A . . . . 11111444
57 1 A . . . . 11114444
58 0 A . . . . 11144444
59 -1 A . . . . 11444444
60 -2 A . . . . 14444444
61 -3 A . . . .044444444
62 -2 B . . . .144444444
63 -1 B . . . .144444444
64 0 B . . . .144444444
65 1 B . . . .144444444
66 2 B . . . .144444444
67 3 B . . . .144444444
68 4 B . . . .144444444
69 5 B . . . .144444444
70 6 B . . . .1444444440
71 5 A . . . .1444444443
72 6 A . . . .1444444413
73 5 A . . . .1444444412
74 4 A . . . .1444444442
75 5 A . . . .1444444142
76 6 A . . . .1444444112
77 5 A . . . .1444444111
78 4 A . . . .1444444141
79 3 A . . . .1444444441
80 4 A . . . .1444441441
81 5 A . . . .1444441141
82 6 A . . . .1444441111
83 5 A . . . .1444441114
84 4 A . . . .1444441144
85 3 A . . . .1444441444
86 2 A . . . .1444444444
87 3 A . . . .1444414444
88 4 A . . . .1444411444
89 5 A . . . .1444411144
90 6 A . . . .1444411114
91 7 A . . . .14444111110
92 8 B . . . .144441111110
93 7 A . . . .144441111113
94 6 A . . . .144441111143
95 5 A . . . .144441111443
96 4 A . . . .144441114443
97 3 A . . . .144441144443
98 2 A . . . .144441444443
99 1 A . . . .144444444443
100 2 A . . . .144414444443
101 3 A . . . .144411444443
102 4 A . . . .144411144443
103 5 A . . . .144411114443
104 6 A . . . .144411111443
105 7 A . . . .144411111143
106 8 A . . . .144411111113
107 7 A . . . .144411111112
108 6 A . . . .144411111142
109 5 A . . . .144411111442
110 4 A . . . .144411114442
111 3 A . . . .144411144442
112 2 A . . . .144411444442
113 1 A . . . .144414444442
114 0 A . . . .144444444442
115 1 A . . . .144144444442
116 2 A . . . .144114444442
117 3 A . . . .144111444442
118 4 A . . . .144111144442
119 5 A . . . .144111114442
120 6 A . . . .144111111442
121 7 A . . . .144111111142
122 8 A . . . .144111111112
123 7 A . . . .144111111111
124 6 A . . . .144111111141
125 5 A . . . .144111111441
126 4 A . . . .144111114441
127 3 A . . . .144111144441
128 2 A . . . .144111444441
129 1 A . . . .144114444441
130 0 A . . . .144144444441
131 -1 A . . . .144444444441
132 0 A . . . .141444444441
133 1 A . . . .141144444441
134 2 A . . . .141114444441
135 3 A . . . .141111444441
136 4 A . . . .141111144441
137 5 A . . . .141111114441
138 6 A . . . .141111111441
139 7 A . . . .141111111141
140 8 A . . . .141111111111
141 7 A . . . .141111111114
142 6 A . . . .141111111144
143 5 A . . . .141111111444
144 4 A . . . .141111114444
145 3 A . . . .141111144444
146 2 A . . . .141111444444
147 1 A . . . .141114444444
148 0 A . . . .141144444444
149 -1 A . . . .141444444444
150 -2 A . . . .144444444444
151 -1 A . . . .114444444444
152 0 A . . . .111444444444
153 1 A . . . .111144444444
154 2 A . . . .111114444444
155 3 A . . . .111111444444
156 4 A . . . .111111144444
157 5 A . . . .111111114444
158 6 A . . . .111111111444
159 7 A . . . .111111111144
160 8 A . . . .111111111114
161 9 A . . . .1111111111110
162 10 B . . . .11111111111110
163 9 A . . . .11111111111113
164 8 A . . . .11111111111143
165 7 A . . . .11111111111443
166 6 A . . . .11111111114443
167 5 A . . . .11111111144443
168 4 A . . . .11111111444443
169 3 A . . . .11111114444443
170 2 A . . . .11111144444443
171 1 A . . . .11111444444443
172 0 A . . . .11114444444443
173 -1 A . . . .11144444444443
174 -2 A . . . .11444444444443
175 -3 A . . . .14444444444443
176 -4 A . . . 044444444444443
177 -3 B . . . 144444444444443
178 -2 B . . . 144444444444443
179 -1 B . . . 144444444444443
180 0 B . . . 144444444444443
181 1 B . . . 144444444444443
182 2 B . . . 144444444444443
183 3 B . . . 144444444444443
184 4 B . . . 144444444444443
185 5 B . . . 144444444444443
186 6 B . . . 144444444444443
187 7 B . . . 144444444444443
188 8 B . . . 144444444444443
189 9 B . . . 144444444444443
190 10 B . . . 144444444444443
191 11 A . . . 1444444444444420
192 12 B . . . 14444444444444210
193 11 A . . . 14444444444444213
194 10 A . . . 14444444444444243
195 9 A . . . 14444444444444143
196 10 A . . . 14444444444441143
197 9 A . . . 14444444444441443
198 8 A . . . 14444444444444443
199 9 A . . . 14444444444414443
200 10 A . . . 14444444444411443
After 200 steps (201 lines): state = A.
Produced 17 nonzeros.
Tape index 10, scanned [-4 .. 12].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 164 | 10 | 79 | 6 | 3 | 66 | 0 | 2 | 9 | 31 | 10 |
| B | 36 | 7 | 3 | 26 | 1 | 5 | 4 | ||||