Comment: This TM produces 11120 nonzeros in 148,304,214 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | 1RB | 4LA | 1LA | 2LA | 1RA | 1 | right | B | 4 | left | A | 1 | left | A | 2 | left | A | 1 | right | A |
B | 3LA | 1RH | 1RA | 2RA | 4RB | 3 | left | A | 1 | right | H | 1 | right | A | 2 | right | A | 4 | right | B |
Simulation is done just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . . . . 0 1 1 B . . . . . 10 2 0 A . . . . . 13 3 -1 A . . . . .043 4 0 B . . . . .143 5 1 B . . . . .143 6 2 A . . . . .1420 7 3 B . . . . .14210 8 2 A . . . . .14213 9 1 A . . . . .14243 10 0 A . . . . .14143 11 1 A . . . . .11143 12 0 A . . . . .11443 13 -1 A . . . . .14443 14 -2 A . . . . 044443 15 -1 B . . . . 144443 16 0 B . . . . 144443 17 1 B . . . . 144443 18 2 B . . . . 144443 19 3 B . . . . 144443 20 4 A . . . . 1444420 21 5 B . . . . 14444210 22 4 A . . . . 14444213 23 3 A . . . . 14444243 24 2 A . . . . 14444143 25 3 A . . . . 14441143 26 2 A . . . . 14441443 27 1 A . . . . 14444443 28 2 A . . . . 14414443 29 3 A . . . . 14411443 30 4 A . . . . 14411143 31 5 A . . . . 14411113 32 4 A . . . . 14411112 33 3 A . . . . 14411142 34 2 A . . . . 14411442 35 1 A . . . . 14414442 36 0 A . . . . 14444442 37 1 A . . . . 14144442 38 2 A . . . . 14114442 39 3 A . . . . 14111442 40 4 A . . . . 14111142 41 5 A . . . . 14111112 42 4 A . . . . 14111111 43 3 A . . . . 14111141 44 2 A . . . . 14111441 45 1 A . . . . 14114441 46 0 A . . . . 14144441 47 -1 A . . . . 14444441 48 0 A . . . . 11444441 49 1 A . . . . 11144441 50 2 A . . . . 11114441 51 3 A . . . . 11111441 52 4 A . . . . 11111141 53 5 A . . . . 11111111 54 4 A . . . . 11111114 55 3 A . . . . 11111144 56 2 A . . . . 11111444 57 1 A . . . . 11114444 58 0 A . . . . 11144444 59 -1 A . . . . 11444444 60 -2 A . . . . 14444444 61 -3 A . . . .044444444 62 -2 B . . . .144444444 63 -1 B . . . .144444444 64 0 B . . . .144444444 65 1 B . . . .144444444 66 2 B . . . .144444444 67 3 B . . . .144444444 68 4 B . . . .144444444 69 5 B . . . .144444444 70 6 B . . . .1444444440 71 5 A . . . .1444444443 72 6 A . . . .1444444413 73 5 A . . . .1444444412 74 4 A . . . .1444444442 75 5 A . . . .1444444142 76 6 A . . . .1444444112 77 5 A . . . .1444444111 78 4 A . . . .1444444141 79 3 A . . . .1444444441 80 4 A . . . .1444441441 81 5 A . . . .1444441141 82 6 A . . . .1444441111 83 5 A . . . .1444441114 84 4 A . . . .1444441144 85 3 A . . . .1444441444 86 2 A . . . .1444444444 87 3 A . . . .1444414444 88 4 A . . . .1444411444 89 5 A . . . .1444411144 90 6 A . . . .1444411114 91 7 A . . . .14444111110 92 8 B . . . .144441111110 93 7 A . . . .144441111113 94 6 A . . . .144441111143 95 5 A . . . .144441111443 96 4 A . . . .144441114443 97 3 A . . . .144441144443 98 2 A . . . .144441444443 99 1 A . . . .144444444443 100 2 A . . . .144414444443 101 3 A . . . .144411444443 102 4 A . . . .144411144443 103 5 A . . . .144411114443 104 6 A . . . .144411111443 105 7 A . . . .144411111143 106 8 A . . . .144411111113 107 7 A . . . .144411111112 108 6 A . . . .144411111142 109 5 A . . . .144411111442 110 4 A . . . .144411114442 111 3 A . . . .144411144442 112 2 A . . . .144411444442 113 1 A . . . .144414444442 114 0 A . . . .144444444442 115 1 A . . . .144144444442 116 2 A . . . .144114444442 117 3 A . . . .144111444442 118 4 A . . . .144111144442 119 5 A . . . .144111114442 120 6 A . . . .144111111442 121 7 A . . . .144111111142 122 8 A . . . .144111111112 123 7 A . . . .144111111111 124 6 A . . . .144111111141 125 5 A . . . .144111111441 126 4 A . . . .144111114441 127 3 A . . . .144111144441 128 2 A . . . .144111444441 129 1 A . . . .144114444441 130 0 A . . . .144144444441 131 -1 A . . . .144444444441 132 0 A . . . .141444444441 133 1 A . . . .141144444441 134 2 A . . . .141114444441 135 3 A . . . .141111444441 136 4 A . . . .141111144441 137 5 A . . . .141111114441 138 6 A . . . .141111111441 139 7 A . . . .141111111141 140 8 A . . . .141111111111 141 7 A . . . .141111111114 142 6 A . . . .141111111144 143 5 A . . . .141111111444 144 4 A . . . .141111114444 145 3 A . . . .141111144444 146 2 A . . . .141111444444 147 1 A . . . .141114444444 148 0 A . . . .141144444444 149 -1 A . . . .141444444444 150 -2 A . . . .144444444444 151 -1 A . . . .114444444444 152 0 A . . . .111444444444 153 1 A . . . .111144444444 154 2 A . . . .111114444444 155 3 A . . . .111111444444 156 4 A . . . .111111144444 157 5 A . . . .111111114444 158 6 A . . . .111111111444 159 7 A . . . .111111111144 160 8 A . . . .111111111114 161 9 A . . . .1111111111110 162 10 B . . . .11111111111110 163 9 A . . . .11111111111113 164 8 A . . . .11111111111143 165 7 A . . . .11111111111443 166 6 A . . . .11111111114443 167 5 A . . . .11111111144443 168 4 A . . . .11111111444443 169 3 A . . . .11111114444443 170 2 A . . . .11111144444443 171 1 A . . . .11111444444443 172 0 A . . . .11114444444443 173 -1 A . . . .11144444444443 174 -2 A . . . .11444444444443 175 -3 A . . . .14444444444443 176 -4 A . . . 044444444444443 177 -3 B . . . 144444444444443 178 -2 B . . . 144444444444443 179 -1 B . . . 144444444444443 180 0 B . . . 144444444444443 181 1 B . . . 144444444444443 182 2 B . . . 144444444444443 183 3 B . . . 144444444444443 184 4 B . . . 144444444444443 185 5 B . . . 144444444444443 186 6 B . . . 144444444444443 187 7 B . . . 144444444444443 188 8 B . . . 144444444444443 189 9 B . . . 144444444444443 190 10 B . . . 144444444444443 191 11 A . . . 1444444444444420 192 12 B . . . 14444444444444210 193 11 A . . . 14444444444444213 194 10 A . . . 14444444444444243 195 9 A . . . 14444444444444143 196 10 A . . . 14444444444441143 197 9 A . . . 14444444444441443 198 8 A . . . 14444444444444443 199 9 A . . . 14444444444414443 200 10 A . . . 14444444444411443 After 200 steps (201 lines): state = A. Produced 17 nonzeros. Tape index 10, scanned [-4 .. 12].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 164 | 10 | 79 | 6 | 3 | 66 | 0 | 2 | 9 | 31 | 10 |
B | 36 | 7 | 3 | 26 | 1 | 5 | 4 |