2-state 5-symbol #c from T.J. & S. Ligocki

Comment: This TM produces 11120 nonzeros in 148,304,214 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 4LA 1LA 2LA 1RA 1 right B 4 left A 1 left A 2 left A 1 right A
B 3LA 1RH 1RA 2RA 4RB 3 left A 1 right H 1 right A 2 right A 4 right B
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . . . . 0
     1    1 B . . . . . 10
     2    0 A . . . . . 13
     3   -1 A . . . . .043
     4    0 B . . . . .143
     5    1 B . . . . .143
     6    2 A . . . . .1420
     7    3 B . . . . .14210
     8    2 A . . . . .14213
     9    1 A . . . . .14243
    10    0 A . . . . .14143
    11    1 A . . . . .11143
    12    0 A . . . . .11443
    13   -1 A . . . . .14443
    14   -2 A . . . . 044443
    15   -1 B . . . . 144443
    16    0 B . . . . 144443
    17    1 B . . . . 144443
    18    2 B . . . . 144443
    19    3 B . . . . 144443
    20    4 A . . . . 1444420
    21    5 B . . . . 14444210
    22    4 A . . . . 14444213
    23    3 A . . . . 14444243
    24    2 A . . . . 14444143
    25    3 A . . . . 14441143
    26    2 A . . . . 14441443
    27    1 A . . . . 14444443
    28    2 A . . . . 14414443
    29    3 A . . . . 14411443
    30    4 A . . . . 14411143
    31    5 A . . . . 14411113
    32    4 A . . . . 14411112
    33    3 A . . . . 14411142
    34    2 A . . . . 14411442
    35    1 A . . . . 14414442
    36    0 A . . . . 14444442
    37    1 A . . . . 14144442
    38    2 A . . . . 14114442
    39    3 A . . . . 14111442
    40    4 A . . . . 14111142
    41    5 A . . . . 14111112
    42    4 A . . . . 14111111
    43    3 A . . . . 14111141
    44    2 A . . . . 14111441
    45    1 A . . . . 14114441
    46    0 A . . . . 14144441
    47   -1 A . . . . 14444441
    48    0 A . . . . 11444441
    49    1 A . . . . 11144441
    50    2 A . . . . 11114441
    51    3 A . . . . 11111441
    52    4 A . . . . 11111141
    53    5 A . . . . 11111111
    54    4 A . . . . 11111114
    55    3 A . . . . 11111144
    56    2 A . . . . 11111444
    57    1 A . . . . 11114444
    58    0 A . . . . 11144444
    59   -1 A . . . . 11444444
    60   -2 A . . . . 14444444
    61   -3 A . . . .044444444
    62   -2 B . . . .144444444
    63   -1 B . . . .144444444
    64    0 B . . . .144444444
    65    1 B . . . .144444444
    66    2 B . . . .144444444
    67    3 B . . . .144444444
    68    4 B . . . .144444444
    69    5 B . . . .144444444
    70    6 B . . . .1444444440
    71    5 A . . . .1444444443
    72    6 A . . . .1444444413
    73    5 A . . . .1444444412
    74    4 A . . . .1444444442
    75    5 A . . . .1444444142
    76    6 A . . . .1444444112
    77    5 A . . . .1444444111
    78    4 A . . . .1444444141
    79    3 A . . . .1444444441
    80    4 A . . . .1444441441
    81    5 A . . . .1444441141
    82    6 A . . . .1444441111
    83    5 A . . . .1444441114
    84    4 A . . . .1444441144
    85    3 A . . . .1444441444
    86    2 A . . . .1444444444
    87    3 A . . . .1444414444
    88    4 A . . . .1444411444
    89    5 A . . . .1444411144
    90    6 A . . . .1444411114
    91    7 A . . . .14444111110
    92    8 B . . . .144441111110
    93    7 A . . . .144441111113
    94    6 A . . . .144441111143
    95    5 A . . . .144441111443
    96    4 A . . . .144441114443
    97    3 A . . . .144441144443
    98    2 A . . . .144441444443
    99    1 A . . . .144444444443
   100    2 A . . . .144414444443
   101    3 A . . . .144411444443
   102    4 A . . . .144411144443
   103    5 A . . . .144411114443
   104    6 A . . . .144411111443
   105    7 A . . . .144411111143
   106    8 A . . . .144411111113
   107    7 A . . . .144411111112
   108    6 A . . . .144411111142
   109    5 A . . . .144411111442
   110    4 A . . . .144411114442
   111    3 A . . . .144411144442
   112    2 A . . . .144411444442
   113    1 A . . . .144414444442
   114    0 A . . . .144444444442
   115    1 A . . . .144144444442
   116    2 A . . . .144114444442
   117    3 A . . . .144111444442
   118    4 A . . . .144111144442
   119    5 A . . . .144111114442
   120    6 A . . . .144111111442
   121    7 A . . . .144111111142
   122    8 A . . . .144111111112
   123    7 A . . . .144111111111
   124    6 A . . . .144111111141
   125    5 A . . . .144111111441
   126    4 A . . . .144111114441
   127    3 A . . . .144111144441
   128    2 A . . . .144111444441
   129    1 A . . . .144114444441
   130    0 A . . . .144144444441
   131   -1 A . . . .144444444441
   132    0 A . . . .141444444441
   133    1 A . . . .141144444441
   134    2 A . . . .141114444441
   135    3 A . . . .141111444441
   136    4 A . . . .141111144441
   137    5 A . . . .141111114441
   138    6 A . . . .141111111441
   139    7 A . . . .141111111141
   140    8 A . . . .141111111111
   141    7 A . . . .141111111114
   142    6 A . . . .141111111144
   143    5 A . . . .141111111444
   144    4 A . . . .141111114444
   145    3 A . . . .141111144444
   146    2 A . . . .141111444444
   147    1 A . . . .141114444444
   148    0 A . . . .141144444444
   149   -1 A . . . .141444444444
   150   -2 A . . . .144444444444
   151   -1 A . . . .114444444444
   152    0 A . . . .111444444444
   153    1 A . . . .111144444444
   154    2 A . . . .111114444444
   155    3 A . . . .111111444444
   156    4 A . . . .111111144444
   157    5 A . . . .111111114444
   158    6 A . . . .111111111444
   159    7 A . . . .111111111144
   160    8 A . . . .111111111114
   161    9 A . . . .1111111111110
   162   10 B . . . .11111111111110
   163    9 A . . . .11111111111113
   164    8 A . . . .11111111111143
   165    7 A . . . .11111111111443
   166    6 A . . . .11111111114443
   167    5 A . . . .11111111144443
   168    4 A . . . .11111111444443
   169    3 A . . . .11111114444443
   170    2 A . . . .11111144444443
   171    1 A . . . .11111444444443
   172    0 A . . . .11114444444443
   173   -1 A . . . .11144444444443
   174   -2 A . . . .11444444444443
   175   -3 A . . . .14444444444443
   176   -4 A . . . 044444444444443
   177   -3 B . . . 144444444444443
   178   -2 B . . . 144444444444443
   179   -1 B . . . 144444444444443
   180    0 B . . . 144444444444443
   181    1 B . . . 144444444444443
   182    2 B . . . 144444444444443
   183    3 B . . . 144444444444443
   184    4 B . . . 144444444444443
   185    5 B . . . 144444444444443
   186    6 B . . . 144444444444443
   187    7 B . . . 144444444444443
   188    8 B . . . 144444444444443
   189    9 B . . . 144444444444443
   190   10 B . . . 144444444444443
   191   11 A . . . 1444444444444420
   192   12 B . . . 14444444444444210
   193   11 A . . . 14444444444444213
   194   10 A . . . 14444444444444243
   195    9 A . . . 14444444444444143
   196   10 A . . . 14444444444441143
   197    9 A . . . 14444444444441443
   198    8 A . . . 14444444444444443
   199    9 A . . . 14444444444414443
   200   10 A . . . 14444444444411443

After 200 steps (201 lines): state = A.
Produced     17 nonzeros.
Tape index 10, scanned [-4 .. 12].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 164 10 79 6 3 66 0 2 9 31 10
B 36 7     3 26 1     5 4
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:41 CEST 2010