Comment: This TM produces 11120 nonzeros in 148,304,214 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | 1RB | 4LA | 1LA | 2LA | 1RA | 1 | right | B | 4 | left | A | 1 | left | A | 2 | left | A | 1 | right | A |
| B | 3LA | 1RH | 1RA | 2RA | 4RB | 3 | left | A | 1 | right | H | 1 | right | A | 2 | right | A | 4 | right | B |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A 3
3 -1 <A 4 3
4 0 1 B> 4 3
5 1 1 4 B> 3
6 2 1 4 2 A>
7 3 1 4 2 1 B>
8 2 1 4 2 1 <A 3
9 1 1 4 2 <A 4 3
10 0 1 4 <A 1 4 3
11 1 1 1 A> 1 4 3
12 0 1 1 <A 4 4 3
+ 14 -2 <A 44 3
15 -1 1 B> 44 3
+ 19 3 1 44 B> 3
20 4 1 44 2 A>
21 5 1 44 2 1 B>
22 4 1 44 2 1 <A 3
23 3 1 44 2 <A 4 3
24 2 1 44 <A 1 4 3
25 3 1 43 1 A> 1 4 3
26 2 1 43 1 <A 4 4 3
27 1 1 43 <A 43 3
28 2 1 4 4 1 A> 43 3
+ 31 5 1 4 4 14 A> 3
32 4 1 4 4 14 <A 2
+ 36 0 1 4 4 <A 44 2
37 1 1 4 1 A> 44 2
+ 41 5 1 4 15 A> 2
42 4 1 4 15 <A 1
+ 47 -1 1 4 <A 45 1
48 0 1 1 A> 45 1
+ 53 5 17 A> 1
54 4 17 <A 4
+ 61 -3 <A 48
62 -2 1 B> 48
+ 70 6 1 48 B>
71 5 1 48 <A 3
72 6 1 47 1 A> 3
73 5 1 47 1 <A 2
74 4 1 47 <A 4 2
75 5 1 46 1 A> 4 2
76 6 1 46 1 1 A> 2
77 5 1 46 1 1 <A 1
+ 79 3 1 46 <A 4 4 1
80 4 1 45 1 A> 4 4 1
+ 82 6 1 45 13 A> 1
83 5 1 45 13 <A 4
+ 86 2 1 45 <A 44
87 3 1 44 1 A> 44
+ 91 7 1 44 15 A>
92 8 1 44 16 B>
93 7 1 44 16 <A 3
+ 99 1 1 44 <A 46 3
100 2 1 43 1 A> 46 3
+ 106 8 1 43 17 A> 3
107 7 1 43 17 <A 2
+ 114 0 1 43 <A 47 2
115 1 1 4 4 1 A> 47 2
+ 122 8 1 4 4 18 A> 2
123 7 1 4 4 18 <A 1
+ 131 -1 1 4 4 <A 48 1
132 0 1 4 1 A> 48 1
+ 140 8 1 4 19 A> 1
141 7 1 4 19 <A 4
+ 150 -2 1 4 <A 410
151 -1 1 1 A> 410
+ 161 9 112 A>
162 10 113 B>
163 9 113 <A 3
+ 176 -4 <A 413 3
177 -3 1 B> 413 3
+ 190 10 1 413 B> 3
191 11 1 413 2 A>
192 12 1 413 2 1 B>
193 11 1 413 2 1 <A 3
194 10 1 413 2 <A 4 3
195 9 1 413 <A 1 4 3
196 10 1 412 1 A> 1 4 3
197 9 1 412 1 <A 4 4 3
198 8 1 412 <A 43 3
199 9 1 411 1 A> 43 3
+ 202 12 1 411 14 A> 3
203 11 1 411 14 <A 2
+ 207 7 1 411 <A 44 2
208 8 1 410 1 A> 44 2
+ 212 12 1 410 15 A> 2
213 11 1 410 15 <A 1
+ 218 6 1 410 <A 45 1
219 7 1 49 1 A> 45 1
+ 224 12 1 49 16 A> 1
225 11 1 49 16 <A 4
+ 231 5 1 49 <A 47
232 6 1 48 1 A> 47
+ 239 13 1 48 18 A>
240 14 1 48 19 B>
241 13 1 48 19 <A 3
+ 250 4 1 48 <A 49 3
251 5 1 47 1 A> 49 3
+ 260 14 1 47 110 A> 3
261 13 1 47 110 <A 2
+ 271 3 1 47 <A 410 2
272 4 1 46 1 A> 410 2
+ 282 14 1 46 111 A> 2
283 13 1 46 111 <A 1
+ 294 2 1 46 <A 411 1
295 3 1 45 1 A> 411 1
+ 306 14 1 45 112 A> 1
307 13 1 45 112 <A 4
+ 319 1 1 45 <A 413
320 2 1 44 1 A> 413
+ 333 15 1 44 114 A>
334 16 1 44 115 B>
335 15 1 44 115 <A 3
+ 350 0 1 44 <A 415 3
351 1 1 43 1 A> 415 3
+ 366 16 1 43 116 A> 3
367 15 1 43 116 <A 2
+ 383 -1 1 43 <A 416 2
384 0 1 4 4 1 A> 416 2
+ 400 16 1 4 4 117 A> 2
401 15 1 4 4 117 <A 1
+ 418 -2 1 4 4 <A 417 1
419 -1 1 4 1 A> 417 1
+ 436 16 1 4 118 A> 1
437 15 1 4 118 <A 4
+ 455 -3 1 4 <A 419
456 -2 1 1 A> 419
+ 475 17 121 A>
476 18 122 B>
477 17 122 <A 3
+ 499 -5 <A 422 3
500 -4 1 B> 422 3
+ 522 18 1 422 B> 3
523 19 1 422 2 A>
524 20 1 422 2 1 B>
525 19 1 422 2 1 <A 3
526 18 1 422 2 <A 4 3
527 17 1 422 <A 1 4 3
528 18 1 421 1 A> 1 4 3
529 17 1 421 1 <A 4 4 3
530 16 1 421 <A 43 3
531 17 1 420 1 A> 43 3
+ 534 20 1 420 14 A> 3
535 19 1 420 14 <A 2
+ 539 15 1 420 <A 44 2
540 16 1 419 1 A> 44 2
+ 544 20 1 419 15 A> 2
545 19 1 419 15 <A 1
+ 550 14 1 419 <A 45 1
551 15 1 418 1 A> 45 1
+ 556 20 1 418 16 A> 1
557 19 1 418 16 <A 4
+ 563 13 1 418 <A 47
564 14 1 417 1 A> 47
+ 571 21 1 417 18 A>
572 22 1 417 19 B>
573 21 1 417 19 <A 3
+ 582 12 1 417 <A 49 3
583 13 1 416 1 A> 49 3
+ 592 22 1 416 110 A> 3
593 21 1 416 110 <A 2
+ 603 11 1 416 <A 410 2
604 12 1 415 1 A> 410 2
+ 614 22 1 415 111 A> 2
615 21 1 415 111 <A 1
+ 626 10 1 415 <A 411 1
627 11 1 414 1 A> 411 1
+ 638 22 1 414 112 A> 1
639 21 1 414 112 <A 4
+ 651 9 1 414 <A 413
652 10 1 413 1 A> 413
+ 665 23 1 413 114 A>
666 24 1 413 115 B>
667 23 1 413 115 <A 3
+ 682 8 1 413 <A 415 3
683 9 1 412 1 A> 415 3
+ 698 24 1 412 116 A> 3
699 23 1 412 116 <A 2
+ 715 7 1 412 <A 416 2
716 8 1 411 1 A> 416 2
+ 732 24 1 411 117 A> 2
733 23 1 411 117 <A 1
+ 750 6 1 411 <A 417 1
751 7 1 410 1 A> 417 1
+ 768 24 1 410 118 A> 1
769 23 1 410 118 <A 4
+ 787 5 1 410 <A 419
788 6 1 49 1 A> 419
+ 807 25 1 49 120 A>
808 26 1 49 121 B>
809 25 1 49 121 <A 3
+ 830 4 1 49 <A 421 3
831 5 1 48 1 A> 421 3
+ 852 26 1 48 122 A> 3
853 25 1 48 122 <A 2
+ 875 3 1 48 <A 422 2
876 4 1 47 1 A> 422 2
+ 898 26 1 47 123 A> 2
899 25 1 47 123 <A 1
After 899 steps (201 lines): state = A.
Produced 32 nonzeros.
Tape index 25, scanned [-5 .. 26].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 833 | 18 | 399 | 14 | 10 | 392 | 0 | 2 | 9 | 31 | 10 |
| B | 66 | 14 | 4 | 48 | 1 | 5 | 4 | ||||