Comment: This TM produces 11120 nonzeros in 148,304,214 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | 1RB | 4LA | 1LA | 2LA | 1RA | 1 | right | B | 4 | left | A | 1 | left | A | 2 | left | A | 1 | right | A |
B | 3LA | 1RH | 1RA | 2RA | 4RB | 3 | left | A | 1 | right | H | 1 | right | A | 2 | right | A | 4 | right | B |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 3 3 -1 <A 4 3 4 0 1 B> 4 3 5 1 1 4 B> 3 6 2 1 4 2 A> 7 3 1 4 2 1 B> 8 2 1 4 2 1 <A 3 9 1 1 4 2 <A 4 3 10 0 1 4 <A 1 4 3 11 1 1 1 A> 1 4 3 12 0 1 1 <A 4 4 3 + 14 -2 <A 44 3 15 -1 1 B> 44 3 + 19 3 1 44 B> 3 20 4 1 44 2 A> 21 5 1 44 2 1 B> 22 4 1 44 2 1 <A 3 23 3 1 44 2 <A 4 3 24 2 1 44 <A 1 4 3 25 3 1 43 1 A> 1 4 3 26 2 1 43 1 <A 4 4 3 27 1 1 43 <A 43 3 28 2 1 4 4 1 A> 43 3 + 31 5 1 4 4 14 A> 3 32 4 1 4 4 14 <A 2 + 36 0 1 4 4 <A 44 2 37 1 1 4 1 A> 44 2 + 41 5 1 4 15 A> 2 42 4 1 4 15 <A 1 + 47 -1 1 4 <A 45 1 48 0 1 1 A> 45 1 + 53 5 17 A> 1 54 4 17 <A 4 + 61 -3 <A 48 62 -2 1 B> 48 + 70 6 1 48 B> 71 5 1 48 <A 3 72 6 1 47 1 A> 3 73 5 1 47 1 <A 2 74 4 1 47 <A 4 2 75 5 1 46 1 A> 4 2 76 6 1 46 1 1 A> 2 77 5 1 46 1 1 <A 1 + 79 3 1 46 <A 4 4 1 80 4 1 45 1 A> 4 4 1 + 82 6 1 45 13 A> 1 83 5 1 45 13 <A 4 + 86 2 1 45 <A 44 87 3 1 44 1 A> 44 + 91 7 1 44 15 A> 92 8 1 44 16 B> 93 7 1 44 16 <A 3 + 99 1 1 44 <A 46 3 100 2 1 43 1 A> 46 3 + 106 8 1 43 17 A> 3 107 7 1 43 17 <A 2 + 114 0 1 43 <A 47 2 115 1 1 4 4 1 A> 47 2 + 122 8 1 4 4 18 A> 2 123 7 1 4 4 18 <A 1 + 131 -1 1 4 4 <A 48 1 132 0 1 4 1 A> 48 1 + 140 8 1 4 19 A> 1 141 7 1 4 19 <A 4 + 150 -2 1 4 <A 410 151 -1 1 1 A> 410 + 161 9 112 A> 162 10 113 B> 163 9 113 <A 3 + 176 -4 <A 413 3 177 -3 1 B> 413 3 + 190 10 1 413 B> 3 191 11 1 413 2 A> 192 12 1 413 2 1 B> 193 11 1 413 2 1 <A 3 194 10 1 413 2 <A 4 3 195 9 1 413 <A 1 4 3 196 10 1 412 1 A> 1 4 3 197 9 1 412 1 <A 4 4 3 198 8 1 412 <A 43 3 199 9 1 411 1 A> 43 3 + 202 12 1 411 14 A> 3 203 11 1 411 14 <A 2 + 207 7 1 411 <A 44 2 208 8 1 410 1 A> 44 2 + 212 12 1 410 15 A> 2 213 11 1 410 15 <A 1 + 218 6 1 410 <A 45 1 219 7 1 49 1 A> 45 1 + 224 12 1 49 16 A> 1 225 11 1 49 16 <A 4 + 231 5 1 49 <A 47 232 6 1 48 1 A> 47 + 239 13 1 48 18 A> 240 14 1 48 19 B> 241 13 1 48 19 <A 3 + 250 4 1 48 <A 49 3 251 5 1 47 1 A> 49 3 + 260 14 1 47 110 A> 3 261 13 1 47 110 <A 2 + 271 3 1 47 <A 410 2 272 4 1 46 1 A> 410 2 + 282 14 1 46 111 A> 2 283 13 1 46 111 <A 1 + 294 2 1 46 <A 411 1 295 3 1 45 1 A> 411 1 + 306 14 1 45 112 A> 1 307 13 1 45 112 <A 4 + 319 1 1 45 <A 413 320 2 1 44 1 A> 413 + 333 15 1 44 114 A> 334 16 1 44 115 B> 335 15 1 44 115 <A 3 + 350 0 1 44 <A 415 3 351 1 1 43 1 A> 415 3 + 366 16 1 43 116 A> 3 367 15 1 43 116 <A 2 + 383 -1 1 43 <A 416 2 384 0 1 4 4 1 A> 416 2 + 400 16 1 4 4 117 A> 2 401 15 1 4 4 117 <A 1 + 418 -2 1 4 4 <A 417 1 419 -1 1 4 1 A> 417 1 + 436 16 1 4 118 A> 1 437 15 1 4 118 <A 4 + 455 -3 1 4 <A 419 456 -2 1 1 A> 419 + 475 17 121 A> 476 18 122 B> 477 17 122 <A 3 + 499 -5 <A 422 3 500 -4 1 B> 422 3 + 522 18 1 422 B> 3 523 19 1 422 2 A> 524 20 1 422 2 1 B> 525 19 1 422 2 1 <A 3 526 18 1 422 2 <A 4 3 527 17 1 422 <A 1 4 3 528 18 1 421 1 A> 1 4 3 529 17 1 421 1 <A 4 4 3 530 16 1 421 <A 43 3 531 17 1 420 1 A> 43 3 + 534 20 1 420 14 A> 3 535 19 1 420 14 <A 2 + 539 15 1 420 <A 44 2 540 16 1 419 1 A> 44 2 + 544 20 1 419 15 A> 2 545 19 1 419 15 <A 1 + 550 14 1 419 <A 45 1 551 15 1 418 1 A> 45 1 + 556 20 1 418 16 A> 1 557 19 1 418 16 <A 4 + 563 13 1 418 <A 47 564 14 1 417 1 A> 47 + 571 21 1 417 18 A> 572 22 1 417 19 B> 573 21 1 417 19 <A 3 + 582 12 1 417 <A 49 3 583 13 1 416 1 A> 49 3 + 592 22 1 416 110 A> 3 593 21 1 416 110 <A 2 + 603 11 1 416 <A 410 2 604 12 1 415 1 A> 410 2 + 614 22 1 415 111 A> 2 615 21 1 415 111 <A 1 + 626 10 1 415 <A 411 1 627 11 1 414 1 A> 411 1 + 638 22 1 414 112 A> 1 639 21 1 414 112 <A 4 + 651 9 1 414 <A 413 652 10 1 413 1 A> 413 + 665 23 1 413 114 A> 666 24 1 413 115 B> 667 23 1 413 115 <A 3 + 682 8 1 413 <A 415 3 683 9 1 412 1 A> 415 3 + 698 24 1 412 116 A> 3 699 23 1 412 116 <A 2 + 715 7 1 412 <A 416 2 716 8 1 411 1 A> 416 2 + 732 24 1 411 117 A> 2 733 23 1 411 117 <A 1 + 750 6 1 411 <A 417 1 751 7 1 410 1 A> 417 1 + 768 24 1 410 118 A> 1 769 23 1 410 118 <A 4 + 787 5 1 410 <A 419 788 6 1 49 1 A> 419 + 807 25 1 49 120 A> 808 26 1 49 121 B> 809 25 1 49 121 <A 3 + 830 4 1 49 <A 421 3 831 5 1 48 1 A> 421 3 + 852 26 1 48 122 A> 3 853 25 1 48 122 <A 2 + 875 3 1 48 <A 422 2 876 4 1 47 1 A> 422 2 + 898 26 1 47 123 A> 2 899 25 1 47 123 <A 1 After 899 steps (201 lines): state = A. Produced 32 nonzeros. Tape index 25, scanned [-5 .. 26].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 833 | 18 | 399 | 14 | 10 | 392 | 0 | 2 | 9 | 31 | 10 |
B | 66 | 14 | 4 | 48 | 1 | 5 | 4 |