Comment: This TM produces 3685 nonzeros in 16268767 steps.
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | 4RB | 2LA | 4LA | 4RA | 3LA | 4 | right | B | 2 | left | A | 4 | left | A | 4 | right | A | 3 | left | A |
B | 1LA | 4LA | 4RA | 3RB | 3LH | 1 | left | A | 4 | left | A | 4 | right | A | 3 | right | B | 3 | left | H |
The same TM just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as 1-macro machine. Simulation is done as 1-macro machine with pure additive config-TRs. Pushing initial machine. Pushing macro factor 1. Steps BasSteps BasTpos Tape contents 0 0 0 A> 1 1 1 4 B> 2 2 0 4 <A 1 3 3 -1 <A 3 1 4 4 0 4 B> 3 1 5 5 1 4 3 B> 1 6 6 0 4 3 <A 4 7 7 1 42 A> 4 8 8 0 42 <A 3 9 10 -2 <A 33 10 11 -1 4 B> 33 11 14 2 4 33 B> 12 15 1 4 33 <A 1 13 16 2 4 32 4 A> 1 14 17 1 4 32 4 <A 2 15 18 0 4 32 <A 3 2 16 19 1 4 3 4 A> 3 2 17 20 2 4 3 42 A> 2 18 21 1 4 3 42 <A 4 19 23 -1 4 3 <A 32 4 20 24 0 42 A> 32 4 21 26 2 44 A> 4 22 27 1 44 <A 3 23 31 -3 <A 35 24 32 -2 4 B> 35 25 37 3 4 35 B> 26 38 2 4 35 <A 1 27 39 3 4 34 4 A> 1 28 40 2 4 34 4 <A 2 29 41 1 4 34 <A 3 2 30 42 2 4 33 4 A> 3 2 31 43 3 4 33 42 A> 2 32 44 2 4 33 42 <A 4 33 46 0 4 33 <A 32 4 34 47 1 4 32 4 A> 32 4 35 49 3 4 32 43 A> 4 36 50 2 4 32 43 <A 3 37 53 -1 4 32 <A 34 38 54 0 4 3 4 A> 34 39 58 4 4 3 45 A> 40 59 5 4 3 46 B> 41 60 4 4 3 46 <A 1 42 66 -2 4 3 <A 36 1 43 67 -1 42 A> 36 1 44 73 5 48 A> 1 45 74 4 48 <A 2 46 82 -4 <A 38 2 47 83 -3 4 B> 38 2 48 91 5 4 38 B> 2 49 92 6 4 38 4 A> 50 93 7 4 38 42 B> 51 94 6 4 38 42 <A 1 52 96 4 4 38 <A 32 1 53 97 5 4 37 4 A> 32 1 54 99 7 4 37 43 A> 1 55 100 6 4 37 43 <A 2 56 103 3 4 37 <A 33 2 57 104 4 4 36 4 A> 33 2 58 107 7 4 36 44 A> 2 59 108 6 4 36 44 <A 4 60 112 2 4 36 <A 34 4 61 113 3 4 35 4 A> 34 4 62 117 7 4 35 45 A> 4 63 118 6 4 35 45 <A 3 64 123 1 4 35 <A 36 65 124 2 4 34 4 A> 36 66 130 8 4 34 47 A> >> Try to prove a PA-CTR with 2 Vars... 0 0 0 [*]* 35+V(2) 41+V(1) A> 1 1 1 [*]* 35+V(2) 42+V(1) B> 2 2 0 [*]* 35+V(2) 42+V(1) <A 1 3 4+V(1) -2+-1*V(1) [*]* 35+V(2) <A 32+V(1) 1 4 5+V(1) -1+-1*V(1) [*]* 34+V(2) 4 A> 32+V(1) 1 5 7+2*V(1) 1 [*]* 34+V(2) 43+V(1) A> 1 6 8+2*V(1) 0 [*]* 34+V(2) 43+V(1) <A 2 7 11+3*V(1) -3+-1*V(1) [*]* 34+V(2) <A 33+V(1) 2 8 12+3*V(1) -2+-1*V(1) [*]* 33+V(2) 4 A> 33+V(1) 2 9 15+4*V(1) 1 [*]* 33+V(2) 44+V(1) A> 2 10 16+4*V(1) 0 [*]* 33+V(2) 44+V(1) <A 4 11 20+5*V(1) -4+-1*V(1) [*]* 33+V(2) <A 34+V(1) 4 12 21+5*V(1) -3+-1*V(1) [*]* 32+V(2) 4 A> 34+V(1) 4 13 25+6*V(1) 1 [*]* 32+V(2) 45+V(1) A> 4 14 26+6*V(1) 0 [*]* 32+V(2) 45+V(1) <A 3 15 31+7*V(1) -5+-1*V(1) [*]* 32+V(2) <A 36+V(1) 16 32+7*V(1) -4+-1*V(1) [*]* 31+V(2) 4 A> 36+V(1) 17 38+8*V(1) 2 [*]* 31+V(2) 47+V(1) A> << Success! ==> defined new CTR 1 (PA) 67 131 9 4 34 48 B> 68 132 8 4 34 48 <A 1 69 140 0 4 34 <A 38 1 70 141 1 4 33 4 A> 38 1 71 149 9 4 33 49 A> 1 72 150 8 4 33 49 <A 2 73 159 -1 4 33 <A 39 2 74 160 0 4 32 4 A> 39 2 75 169 9 4 32 410 A> 2 76 170 8 4 32 410 <A 4 77 180 -2 4 32 <A 310 4 78 181 -1 4 3 4 A> 310 4 79 191 9 4 3 411 A> 4 80 192 8 4 3 411 <A 3 81 203 -3 4 3 <A 312 82 204 -2 42 A> 312 83 216 10 414 A> 84 217 11 415 B> 85 218 10 415 <A 1 86 233 -5 <A 315 1 87 234 -4 4 B> 315 1 88 249 11 4 315 B> 1 89 250 10 4 315 <A 4 90 251 11 4 314 4 A> 4 91 252 10 4 314 4 <A 3 92 253 9 4 314 <A 32 93 254 10 4 313 4 A> 32 94 256 12 4 313 43 A> >> Try to prove a PPA-CTR with 2 Vars... 0 0 0 41+V(2) 34 41+V(1) A> 1 1 1 41+V(2) 34 42+V(1) B> 2 2 0 41+V(2) 34 42+V(1) <A 1 3 4+V(1) -2+-1*V(1) 41+V(2) 34 <A 32+V(1) 1 4 5+V(1) -1+-1*V(1) 41+V(2) 33 4 A> 32+V(1) 1 5 7+2*V(1) 1 41+V(2) 33 43+V(1) A> 1 6 8+2*V(1) 0 41+V(2) 33 43+V(1) <A 2 7 11+3*V(1) -3+-1*V(1) 41+V(2) 33 <A 33+V(1) 2 8 12+3*V(1) -2+-1*V(1) 41+V(2) 32 4 A> 33+V(1) 2 9 15+4*V(1) 1 41+V(2) 32 44+V(1) A> 2 10 16+4*V(1) 0 41+V(2) 32 44+V(1) <A 4 11 20+5*V(1) -4+-1*V(1) 41+V(2) 32 <A 34+V(1) 4 12 21+5*V(1) -3+-1*V(1) 41+V(2) 3 4 A> 34+V(1) 4 13 25+6*V(1) 1 41+V(2) 3 45+V(1) A> 4 14 26+6*V(1) 0 41+V(2) 3 45+V(1) <A 3 15 31+7*V(1) -5+-1*V(1) 41+V(2) 3 <A 36+V(1) 16 32+7*V(1) -4+-1*V(1) 42+V(2) A> 36+V(1) 17 38+8*V(1) 2 48+V(1)+V(2) A> 18 39+8*V(1) 3 49+V(1)+V(2) B> 19 40+8*V(1) 2 49+V(1)+V(2) <A 1 20 49+9*V(1)+V(2) -7+-1*V(1)+-1*V(2) <A 39+V(1)+V(2) 1 21 50+9*V(1)+V(2) -6+-1*V(1)+-1*V(2) 4 B> 39+V(1)+V(2) 1 22 59+10*V(1)+2*V(2) 3 4 39+V(1)+V(2) B> 1 23 60+10*V(1)+2*V(2) 2 4 39+V(1)+V(2) <A 4 24 61+10*V(1)+2*V(2) 3 4 38+V(1)+V(2) 4 A> 4 25 62+10*V(1)+2*V(2) 2 4 38+V(1)+V(2) 4 <A 3 26 63+10*V(1)+2*V(2) 1 4 38+V(1)+V(2) <A 32 27 64+10*V(1)+2*V(2) 2 4 37+V(1)+V(2) 4 A> 32 28 66+10*V(1)+2*V(2) 4 4 37+V(1)+V(2) 43 A> << Success! ==> defined new CTR 2 (PPA) 94 256 12 4 313 43 A> == Executing PA-CTR 1, V(1)=2, V(2)=8, repcount=3, factor=6/4 145 562 18 4 3 421 A> 146 563 19 4 3 422 B> 147 564 18 4 3 422 <A 1 148 586 -4 4 3 <A 322 1 149 587 -3 42 A> 322 1 150 609 19 424 A> 1 151 610 18 424 <A 2 152 634 -6 <A 324 2 153 635 -5 4 B> 324 2 154 659 19 4 324 B> 2 155 660 20 4 324 4 A> >> Try to prove a PPA-CTR with 2 Vars... 0 0 0 41+V(2) 3 42+V(1) A> 1 1 1 41+V(2) 3 43+V(1) B> 2 2 0 41+V(2) 3 43+V(1) <A 1 3 5+V(1) -3+-1*V(1) 41+V(2) 3 <A 33+V(1) 1 4 6+V(1) -2+-1*V(1) 42+V(2) A> 33+V(1) 1 5 9+2*V(1) 1 45+V(1)+V(2) A> 1 6 10+2*V(1) 0 45+V(1)+V(2) <A 2 7 15+3*V(1)+V(2) -5+-1*V(1)+-1*V(2) <A 35+V(1)+V(2) 2 8 16+3*V(1)+V(2) -4+-1*V(1)+-1*V(2) 4 B> 35+V(1)+V(2) 2 9 21+4*V(1)+2*V(2) 1 4 35+V(1)+V(2) B> 2 10 22+4*V(1)+2*V(2) 2 4 35+V(1)+V(2) 4 A> << Success! ==> defined new CTR 3 (PPA) 155 660 20 4 324 4 A> == Executing PA-CTR 1, V(1)=0, V(2)=19, repcount=5, factor=6/4 240 1330 30 4 34 431 A> == Executing PPA-CTR 2 (once), V(1)=30, V(2)=0 268 1696 34 4 337 43 A> == Executing PA-CTR 1, V(1)=2, V(2)=32, repcount=9, factor=6/4 421 3910 52 4 3 457 A> == Executing PPA-CTR 3 (once), V(1)=55, V(2)=0 431 4152 54 4 360 4 A> == Executing PA-CTR 1, V(1)=0, V(2)=55, repcount=14, factor=6/4 669 9052 82 4 34 485 A> == Executing PPA-CTR 2 (once), V(1)=84, V(2)=0 697 9958 86 4 391 43 A> == Executing PA-CTR 1, V(1)=2, V(2)=86, repcount=22, factor=6/4 1071 22234 130 4 33 4135 A> 1072 22235 131 4 33 4136 B> 1073 22236 130 4 33 4136 <A 1 1074 22372 -6 4 33 <A 3136 1 1075 22373 -5 4 32 4 A> 3136 1 1076 22509 131 4 32 4137 A> 1 1077 22510 130 4 32 4137 <A 2 1078 22647 -7 4 32 <A 3137 2 1079 22648 -6 4 3 4 A> 3137 2 1080 22785 131 4 3 4138 A> 2 1081 22786 130 4 3 4138 <A 4 1082 22924 -8 4 3 <A 3138 4 1083 22925 -7 42 A> 3138 4 1084 23063 131 4140 A> 4 1085 23064 130 4140 <A 3 1086 23204 -10 <A 3141 1087 23205 -9 4 B> 3141 1088 23346 132 4 3141 B> 1089 23347 131 4 3141 <A 1 1090 23348 132 4 3140 4 A> 1 1091 23349 131 4 3140 4 <A 2 1092 23350 130 4 3140 <A 3 2 1093 23351 131 4 3139 4 A> 3 2 1094 23352 132 4 3139 42 A> 2 1095 23353 131 4 3139 42 <A 4 1096 23355 129 4 3139 <A 32 4 1097 23356 130 4 3138 4 A> 32 4 1098 23358 132 4 3138 43 A> 4 1099 23359 131 4 3138 43 <A 3 1100 23362 128 4 3138 <A 34 1101 23363 129 4 3137 4 A> 34 1102 23367 133 4 3137 45 A> >> Try to prove a PPA-CTR with 2 Vars... 0 0 0 41+V(2) 33 43+V(1) A> 1 1 1 41+V(2) 33 44+V(1) B> 2 2 0 41+V(2) 33 44+V(1) <A 1 3 6+V(1) -4+-1*V(1) 41+V(2) 33 <A 34+V(1) 1 4 7+V(1) -3+-1*V(1) 41+V(2) 32 4 A> 34+V(1) 1 5 11+2*V(1) 1 41+V(2) 32 45+V(1) A> 1 6 12+2*V(1) 0 41+V(2) 32 45+V(1) <A 2 7 17+3*V(1) -5+-1*V(1) 41+V(2) 32 <A 35+V(1) 2 8 18+3*V(1) -4+-1*V(1) 41+V(2) 3 4 A> 35+V(1) 2 9 23+4*V(1) 1 41+V(2) 3 46+V(1) A> 2 10 24+4*V(1) 0 41+V(2) 3 46+V(1) <A 4 11 30+5*V(1) -6+-1*V(1) 41+V(2) 3 <A 36+V(1) 4 12 31+5*V(1) -5+-1*V(1) 42+V(2) A> 36+V(1) 4 13 37+6*V(1) 1 48+V(1)+V(2) A> 4 14 38+6*V(1) 0 48+V(1)+V(2) <A 3 15 46+7*V(1)+V(2) -8+-1*V(1)+-1*V(2) <A 39+V(1)+V(2) 16 47+7*V(1)+V(2) -7+-1*V(1)+-1*V(2) 4 B> 39+V(1)+V(2) 17 56+8*V(1)+2*V(2) 2 4 39+V(1)+V(2) B> 18 57+8*V(1)+2*V(2) 1 4 39+V(1)+V(2) <A 1 19 58+8*V(1)+2*V(2) 2 4 38+V(1)+V(2) 4 A> 1 20 59+8*V(1)+2*V(2) 1 4 38+V(1)+V(2) 4 <A 2 21 60+8*V(1)+2*V(2) 0 4 38+V(1)+V(2) <A 3 2 22 61+8*V(1)+2*V(2) 1 4 37+V(1)+V(2) 4 A> 3 2 23 62+8*V(1)+2*V(2) 2 4 37+V(1)+V(2) 42 A> 2 24 63+8*V(1)+2*V(2) 1 4 37+V(1)+V(2) 42 <A 4 25 65+8*V(1)+2*V(2) -1 4 37+V(1)+V(2) <A 32 4 26 66+8*V(1)+2*V(2) 0 4 36+V(1)+V(2) 4 A> 32 4 27 68+8*V(1)+2*V(2) 2 4 36+V(1)+V(2) 43 A> 4 28 69+8*V(1)+2*V(2) 1 4 36+V(1)+V(2) 43 <A 3 29 72+8*V(1)+2*V(2) -2 4 36+V(1)+V(2) <A 34 30 73+8*V(1)+2*V(2) -1 4 35+V(1)+V(2) 4 A> 34 31 77+8*V(1)+2*V(2) 3 4 35+V(1)+V(2) 45 A> << Success! ==> defined new CTR 4 (PPA) 1102 23367 133 4 3137 45 A> == Executing PA-CTR 1, V(1)=4, V(2)=132, repcount=34, factor=6/4 1680 52675 201 4 3 4209 A> == Executing PPA-CTR 3 (once), V(1)=207, V(2)=0 1690 53525 203 4 3212 4 A> == Executing PA-CTR 1, V(1)=0, V(2)=207, repcount=52, factor=6/4 2574 119149 307 4 34 4313 A> == Executing PPA-CTR 2 (once), V(1)=312, V(2)=0 2602 122335 311 4 3319 43 A> == Executing PA-CTR 1, V(1)=2, V(2)=314, repcount=79, factor=6/4 3945 274489 469 4 33 4477 A> == Executing PPA-CTR 4 (once), V(1)=474, V(2)=0 3976 278358 472 4 3479 45 A> == Executing PA-CTR 1, V(1)=4, V(2)=474, repcount=119, factor=6/4 5999 623696 710 4 33 4719 A> == Executing PPA-CTR 4 (once), V(1)=716, V(2)=0 6030 629501 713 4 3721 45 A> == Executing PA-CTR 1, V(1)=4, V(2)=716, repcount=180, factor=6/4 9090 1415381 1073 4 3 41085 A> == Executing PPA-CTR 3 (once), V(1)=1083, V(2)=0 9100 1419735 1075 4 31088 4 A> == Executing PA-CTR 1, V(1)=0, V(2)=1083, repcount=271, factor=6/4 13707 3186113 1617 4 34 41627 A> == Executing PPA-CTR 2 (once), V(1)=1626, V(2)=0 13735 3202439 1621 4 31633 43 A> == Executing PA-CTR 1, V(1)=2, V(2)=1628, repcount=408, factor=6/4 20671 7209815 2437 4 3 42451 A> == Executing PPA-CTR 3 (once), V(1)=2449, V(2)=0 20681 7219633 2439 4 32454 4 A> == Executing PA-CTR 1, V(1)=0, V(2)=2449, repcount=613, factor=6/4 31102 16246671 3665 4 32 43679 A> 31103 16246672 3666 4 32 43680 B> 31104 16246673 3665 4 32 43680 <A 1 31105 16250353 -15 4 32 <A 33680 1 31106 16250354 -14 4 3 4 A> 33680 1 31107 16254034 3666 4 3 43681 A> 1 31108 16254035 3665 4 3 43681 <A 2 31109 16257716 -16 4 3 <A 33681 2 31110 16257717 -15 42 A> 33681 2 31111 16261398 3666 43683 A> 2 31112 16261399 3665 43683 <A 4 31113 16265082 -18 <A 33683 4 31114 16265083 -17 4 B> 33683 4 31115 16268766 3666 4 33683 B> 4 31116 16268767 3665 4 33683 <H 3 31116 16268767 3665 4 33683 <H 3 [stop] Lines: 174 Top steps: 172 Macro steps: 31116 Basic steps: 16268767 Tape index: 3665 nonzeros: 3685 log10(nonzeros): 3.566 log10(steps ): 7.211 Run state: stop
Input to awk program: gohalt 1 nbs 5 T 2-state 5-symbol #b from T.J. & S. Ligocki : 3685 16268767 5T 4RB 2LA 4LA 4RA 3LA 1LA 4LA 4RA 3RB 3LH L 10 M 201 pref sim machv Lig25_b just simple machv Lig25_b-r with repetitions reduced machv Lig25_b-1 with tape symbol exponents machv Lig25_b-m as 1-macro machine machv Lig25_b-a as 1-macro machine with pure additive config-TRs iam Lig25_b-a mtype 1 mmtyp 3 r 1 H 1 mac 0 E 2 sympr HM 1 date Tue Jul 6 22:12:40 CEST 2010 edate Tue Jul 6 22:12:41 CEST 2010 bnspeed 1Start: Tue Jul 6 22:12:40 CEST 2010
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;