Comment: This TM produces 3685 nonzeros in 16268767 steps.
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | 4RB | 2LA | 4LA | 4RA | 3LA | 4 | right | B | 2 | left | A | 4 | left | A | 4 | right | A | 3 | left | A |
| B | 1LA | 4LA | 4RA | 3RB | 3LH | 1 | left | A | 4 | left | A | 4 | right | A | 3 | right | B | 3 | left | H |
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.
Simulation is done as 1-macro machine with pure additive config-TRs.
Pushing initial machine.
Pushing macro factor 1.
Steps BasSteps BasTpos Tape contents
0 0 0 A>
1 1 1 4 B>
2 2 0 4 <A 1
3 3 -1 <A 3 1
4 4 0 4 B> 3 1
5 5 1 4 3 B> 1
6 6 0 4 3 <A 4
7 7 1 42 A> 4
8 8 0 42 <A 3
9 10 -2 <A 33
10 11 -1 4 B> 33
11 14 2 4 33 B>
12 15 1 4 33 <A 1
13 16 2 4 32 4 A> 1
14 17 1 4 32 4 <A 2
15 18 0 4 32 <A 3 2
16 19 1 4 3 4 A> 3 2
17 20 2 4 3 42 A> 2
18 21 1 4 3 42 <A 4
19 23 -1 4 3 <A 32 4
20 24 0 42 A> 32 4
21 26 2 44 A> 4
22 27 1 44 <A 3
23 31 -3 <A 35
24 32 -2 4 B> 35
25 37 3 4 35 B>
26 38 2 4 35 <A 1
27 39 3 4 34 4 A> 1
28 40 2 4 34 4 <A 2
29 41 1 4 34 <A 3 2
30 42 2 4 33 4 A> 3 2
31 43 3 4 33 42 A> 2
32 44 2 4 33 42 <A 4
33 46 0 4 33 <A 32 4
34 47 1 4 32 4 A> 32 4
35 49 3 4 32 43 A> 4
36 50 2 4 32 43 <A 3
37 53 -1 4 32 <A 34
38 54 0 4 3 4 A> 34
39 58 4 4 3 45 A>
40 59 5 4 3 46 B>
41 60 4 4 3 46 <A 1
42 66 -2 4 3 <A 36 1
43 67 -1 42 A> 36 1
44 73 5 48 A> 1
45 74 4 48 <A 2
46 82 -4 <A 38 2
47 83 -3 4 B> 38 2
48 91 5 4 38 B> 2
49 92 6 4 38 4 A>
50 93 7 4 38 42 B>
51 94 6 4 38 42 <A 1
52 96 4 4 38 <A 32 1
53 97 5 4 37 4 A> 32 1
54 99 7 4 37 43 A> 1
55 100 6 4 37 43 <A 2
56 103 3 4 37 <A 33 2
57 104 4 4 36 4 A> 33 2
58 107 7 4 36 44 A> 2
59 108 6 4 36 44 <A 4
60 112 2 4 36 <A 34 4
61 113 3 4 35 4 A> 34 4
62 117 7 4 35 45 A> 4
63 118 6 4 35 45 <A 3
64 123 1 4 35 <A 36
65 124 2 4 34 4 A> 36
66 130 8 4 34 47 A>
>> Try to prove a PA-CTR with 2 Vars...
0 0 0 [*]* 35+V(2) 41+V(1) A>
1 1 1 [*]* 35+V(2) 42+V(1) B>
2 2 0 [*]* 35+V(2) 42+V(1) <A 1
3 4+V(1) -2+-1*V(1) [*]* 35+V(2) <A 32+V(1) 1
4 5+V(1) -1+-1*V(1) [*]* 34+V(2) 4 A> 32+V(1) 1
5 7+2*V(1) 1 [*]* 34+V(2) 43+V(1) A> 1
6 8+2*V(1) 0 [*]* 34+V(2) 43+V(1) <A 2
7 11+3*V(1) -3+-1*V(1) [*]* 34+V(2) <A 33+V(1) 2
8 12+3*V(1) -2+-1*V(1) [*]* 33+V(2) 4 A> 33+V(1) 2
9 15+4*V(1) 1 [*]* 33+V(2) 44+V(1) A> 2
10 16+4*V(1) 0 [*]* 33+V(2) 44+V(1) <A 4
11 20+5*V(1) -4+-1*V(1) [*]* 33+V(2) <A 34+V(1) 4
12 21+5*V(1) -3+-1*V(1) [*]* 32+V(2) 4 A> 34+V(1) 4
13 25+6*V(1) 1 [*]* 32+V(2) 45+V(1) A> 4
14 26+6*V(1) 0 [*]* 32+V(2) 45+V(1) <A 3
15 31+7*V(1) -5+-1*V(1) [*]* 32+V(2) <A 36+V(1)
16 32+7*V(1) -4+-1*V(1) [*]* 31+V(2) 4 A> 36+V(1)
17 38+8*V(1) 2 [*]* 31+V(2) 47+V(1) A>
<< Success! ==> defined new CTR 1 (PA)
67 131 9 4 34 48 B>
68 132 8 4 34 48 <A 1
69 140 0 4 34 <A 38 1
70 141 1 4 33 4 A> 38 1
71 149 9 4 33 49 A> 1
72 150 8 4 33 49 <A 2
73 159 -1 4 33 <A 39 2
74 160 0 4 32 4 A> 39 2
75 169 9 4 32 410 A> 2
76 170 8 4 32 410 <A 4
77 180 -2 4 32 <A 310 4
78 181 -1 4 3 4 A> 310 4
79 191 9 4 3 411 A> 4
80 192 8 4 3 411 <A 3
81 203 -3 4 3 <A 312
82 204 -2 42 A> 312
83 216 10 414 A>
84 217 11 415 B>
85 218 10 415 <A 1
86 233 -5 <A 315 1
87 234 -4 4 B> 315 1
88 249 11 4 315 B> 1
89 250 10 4 315 <A 4
90 251 11 4 314 4 A> 4
91 252 10 4 314 4 <A 3
92 253 9 4 314 <A 32
93 254 10 4 313 4 A> 32
94 256 12 4 313 43 A>
>> Try to prove a PPA-CTR with 2 Vars...
0 0 0 41+V(2) 34 41+V(1) A>
1 1 1 41+V(2) 34 42+V(1) B>
2 2 0 41+V(2) 34 42+V(1) <A 1
3 4+V(1) -2+-1*V(1) 41+V(2) 34 <A 32+V(1) 1
4 5+V(1) -1+-1*V(1) 41+V(2) 33 4 A> 32+V(1) 1
5 7+2*V(1) 1 41+V(2) 33 43+V(1) A> 1
6 8+2*V(1) 0 41+V(2) 33 43+V(1) <A 2
7 11+3*V(1) -3+-1*V(1) 41+V(2) 33 <A 33+V(1) 2
8 12+3*V(1) -2+-1*V(1) 41+V(2) 32 4 A> 33+V(1) 2
9 15+4*V(1) 1 41+V(2) 32 44+V(1) A> 2
10 16+4*V(1) 0 41+V(2) 32 44+V(1) <A 4
11 20+5*V(1) -4+-1*V(1) 41+V(2) 32 <A 34+V(1) 4
12 21+5*V(1) -3+-1*V(1) 41+V(2) 3 4 A> 34+V(1) 4
13 25+6*V(1) 1 41+V(2) 3 45+V(1) A> 4
14 26+6*V(1) 0 41+V(2) 3 45+V(1) <A 3
15 31+7*V(1) -5+-1*V(1) 41+V(2) 3 <A 36+V(1)
16 32+7*V(1) -4+-1*V(1) 42+V(2) A> 36+V(1)
17 38+8*V(1) 2 48+V(1)+V(2) A>
18 39+8*V(1) 3 49+V(1)+V(2) B>
19 40+8*V(1) 2 49+V(1)+V(2) <A 1
20 49+9*V(1)+V(2) -7+-1*V(1)+-1*V(2) <A 39+V(1)+V(2) 1
21 50+9*V(1)+V(2) -6+-1*V(1)+-1*V(2) 4 B> 39+V(1)+V(2) 1
22 59+10*V(1)+2*V(2) 3 4 39+V(1)+V(2) B> 1
23 60+10*V(1)+2*V(2) 2 4 39+V(1)+V(2) <A 4
24 61+10*V(1)+2*V(2) 3 4 38+V(1)+V(2) 4 A> 4
25 62+10*V(1)+2*V(2) 2 4 38+V(1)+V(2) 4 <A 3
26 63+10*V(1)+2*V(2) 1 4 38+V(1)+V(2) <A 32
27 64+10*V(1)+2*V(2) 2 4 37+V(1)+V(2) 4 A> 32
28 66+10*V(1)+2*V(2) 4 4 37+V(1)+V(2) 43 A>
<< Success! ==> defined new CTR 2 (PPA)
94 256 12 4 313 43 A>
== Executing PA-CTR 1, V(1)=2, V(2)=8, repcount=3, factor=6/4
145 562 18 4 3 421 A>
146 563 19 4 3 422 B>
147 564 18 4 3 422 <A 1
148 586 -4 4 3 <A 322 1
149 587 -3 42 A> 322 1
150 609 19 424 A> 1
151 610 18 424 <A 2
152 634 -6 <A 324 2
153 635 -5 4 B> 324 2
154 659 19 4 324 B> 2
155 660 20 4 324 4 A>
>> Try to prove a PPA-CTR with 2 Vars...
0 0 0 41+V(2) 3 42+V(1) A>
1 1 1 41+V(2) 3 43+V(1) B>
2 2 0 41+V(2) 3 43+V(1) <A 1
3 5+V(1) -3+-1*V(1) 41+V(2) 3 <A 33+V(1) 1
4 6+V(1) -2+-1*V(1) 42+V(2) A> 33+V(1) 1
5 9+2*V(1) 1 45+V(1)+V(2) A> 1
6 10+2*V(1) 0 45+V(1)+V(2) <A 2
7 15+3*V(1)+V(2) -5+-1*V(1)+-1*V(2) <A 35+V(1)+V(2) 2
8 16+3*V(1)+V(2) -4+-1*V(1)+-1*V(2) 4 B> 35+V(1)+V(2) 2
9 21+4*V(1)+2*V(2) 1 4 35+V(1)+V(2) B> 2
10 22+4*V(1)+2*V(2) 2 4 35+V(1)+V(2) 4 A>
<< Success! ==> defined new CTR 3 (PPA)
155 660 20 4 324 4 A>
== Executing PA-CTR 1, V(1)=0, V(2)=19, repcount=5, factor=6/4
240 1330 30 4 34 431 A>
== Executing PPA-CTR 2 (once), V(1)=30, V(2)=0
268 1696 34 4 337 43 A>
== Executing PA-CTR 1, V(1)=2, V(2)=32, repcount=9, factor=6/4
421 3910 52 4 3 457 A>
== Executing PPA-CTR 3 (once), V(1)=55, V(2)=0
431 4152 54 4 360 4 A>
== Executing PA-CTR 1, V(1)=0, V(2)=55, repcount=14, factor=6/4
669 9052 82 4 34 485 A>
== Executing PPA-CTR 2 (once), V(1)=84, V(2)=0
697 9958 86 4 391 43 A>
== Executing PA-CTR 1, V(1)=2, V(2)=86, repcount=22, factor=6/4
1071 22234 130 4 33 4135 A>
1072 22235 131 4 33 4136 B>
1073 22236 130 4 33 4136 <A 1
1074 22372 -6 4 33 <A 3136 1
1075 22373 -5 4 32 4 A> 3136 1
1076 22509 131 4 32 4137 A> 1
1077 22510 130 4 32 4137 <A 2
1078 22647 -7 4 32 <A 3137 2
1079 22648 -6 4 3 4 A> 3137 2
1080 22785 131 4 3 4138 A> 2
1081 22786 130 4 3 4138 <A 4
1082 22924 -8 4 3 <A 3138 4
1083 22925 -7 42 A> 3138 4
1084 23063 131 4140 A> 4
1085 23064 130 4140 <A 3
1086 23204 -10 <A 3141
1087 23205 -9 4 B> 3141
1088 23346 132 4 3141 B>
1089 23347 131 4 3141 <A 1
1090 23348 132 4 3140 4 A> 1
1091 23349 131 4 3140 4 <A 2
1092 23350 130 4 3140 <A 3 2
1093 23351 131 4 3139 4 A> 3 2
1094 23352 132 4 3139 42 A> 2
1095 23353 131 4 3139 42 <A 4
1096 23355 129 4 3139 <A 32 4
1097 23356 130 4 3138 4 A> 32 4
1098 23358 132 4 3138 43 A> 4
1099 23359 131 4 3138 43 <A 3
1100 23362 128 4 3138 <A 34
1101 23363 129 4 3137 4 A> 34
1102 23367 133 4 3137 45 A>
>> Try to prove a PPA-CTR with 2 Vars...
0 0 0 41+V(2) 33 43+V(1) A>
1 1 1 41+V(2) 33 44+V(1) B>
2 2 0 41+V(2) 33 44+V(1) <A 1
3 6+V(1) -4+-1*V(1) 41+V(2) 33 <A 34+V(1) 1
4 7+V(1) -3+-1*V(1) 41+V(2) 32 4 A> 34+V(1) 1
5 11+2*V(1) 1 41+V(2) 32 45+V(1) A> 1
6 12+2*V(1) 0 41+V(2) 32 45+V(1) <A 2
7 17+3*V(1) -5+-1*V(1) 41+V(2) 32 <A 35+V(1) 2
8 18+3*V(1) -4+-1*V(1) 41+V(2) 3 4 A> 35+V(1) 2
9 23+4*V(1) 1 41+V(2) 3 46+V(1) A> 2
10 24+4*V(1) 0 41+V(2) 3 46+V(1) <A 4
11 30+5*V(1) -6+-1*V(1) 41+V(2) 3 <A 36+V(1) 4
12 31+5*V(1) -5+-1*V(1) 42+V(2) A> 36+V(1) 4
13 37+6*V(1) 1 48+V(1)+V(2) A> 4
14 38+6*V(1) 0 48+V(1)+V(2) <A 3
15 46+7*V(1)+V(2) -8+-1*V(1)+-1*V(2) <A 39+V(1)+V(2)
16 47+7*V(1)+V(2) -7+-1*V(1)+-1*V(2) 4 B> 39+V(1)+V(2)
17 56+8*V(1)+2*V(2) 2 4 39+V(1)+V(2) B>
18 57+8*V(1)+2*V(2) 1 4 39+V(1)+V(2) <A 1
19 58+8*V(1)+2*V(2) 2 4 38+V(1)+V(2) 4 A> 1
20 59+8*V(1)+2*V(2) 1 4 38+V(1)+V(2) 4 <A 2
21 60+8*V(1)+2*V(2) 0 4 38+V(1)+V(2) <A 3 2
22 61+8*V(1)+2*V(2) 1 4 37+V(1)+V(2) 4 A> 3 2
23 62+8*V(1)+2*V(2) 2 4 37+V(1)+V(2) 42 A> 2
24 63+8*V(1)+2*V(2) 1 4 37+V(1)+V(2) 42 <A 4
25 65+8*V(1)+2*V(2) -1 4 37+V(1)+V(2) <A 32 4
26 66+8*V(1)+2*V(2) 0 4 36+V(1)+V(2) 4 A> 32 4
27 68+8*V(1)+2*V(2) 2 4 36+V(1)+V(2) 43 A> 4
28 69+8*V(1)+2*V(2) 1 4 36+V(1)+V(2) 43 <A 3
29 72+8*V(1)+2*V(2) -2 4 36+V(1)+V(2) <A 34
30 73+8*V(1)+2*V(2) -1 4 35+V(1)+V(2) 4 A> 34
31 77+8*V(1)+2*V(2) 3 4 35+V(1)+V(2) 45 A>
<< Success! ==> defined new CTR 4 (PPA)
1102 23367 133 4 3137 45 A>
== Executing PA-CTR 1, V(1)=4, V(2)=132, repcount=34, factor=6/4
1680 52675 201 4 3 4209 A>
== Executing PPA-CTR 3 (once), V(1)=207, V(2)=0
1690 53525 203 4 3212 4 A>
== Executing PA-CTR 1, V(1)=0, V(2)=207, repcount=52, factor=6/4
2574 119149 307 4 34 4313 A>
== Executing PPA-CTR 2 (once), V(1)=312, V(2)=0
2602 122335 311 4 3319 43 A>
== Executing PA-CTR 1, V(1)=2, V(2)=314, repcount=79, factor=6/4
3945 274489 469 4 33 4477 A>
== Executing PPA-CTR 4 (once), V(1)=474, V(2)=0
3976 278358 472 4 3479 45 A>
== Executing PA-CTR 1, V(1)=4, V(2)=474, repcount=119, factor=6/4
5999 623696 710 4 33 4719 A>
== Executing PPA-CTR 4 (once), V(1)=716, V(2)=0
6030 629501 713 4 3721 45 A>
== Executing PA-CTR 1, V(1)=4, V(2)=716, repcount=180, factor=6/4
9090 1415381 1073 4 3 41085 A>
== Executing PPA-CTR 3 (once), V(1)=1083, V(2)=0
9100 1419735 1075 4 31088 4 A>
== Executing PA-CTR 1, V(1)=0, V(2)=1083, repcount=271, factor=6/4
13707 3186113 1617 4 34 41627 A>
== Executing PPA-CTR 2 (once), V(1)=1626, V(2)=0
13735 3202439 1621 4 31633 43 A>
== Executing PA-CTR 1, V(1)=2, V(2)=1628, repcount=408, factor=6/4
20671 7209815 2437 4 3 42451 A>
== Executing PPA-CTR 3 (once), V(1)=2449, V(2)=0
20681 7219633 2439 4 32454 4 A>
== Executing PA-CTR 1, V(1)=0, V(2)=2449, repcount=613, factor=6/4
31102 16246671 3665 4 32 43679 A>
31103 16246672 3666 4 32 43680 B>
31104 16246673 3665 4 32 43680 <A 1
31105 16250353 -15 4 32 <A 33680 1
31106 16250354 -14 4 3 4 A> 33680 1
31107 16254034 3666 4 3 43681 A> 1
31108 16254035 3665 4 3 43681 <A 2
31109 16257716 -16 4 3 <A 33681 2
31110 16257717 -15 42 A> 33681 2
31111 16261398 3666 43683 A> 2
31112 16261399 3665 43683 <A 4
31113 16265082 -18 <A 33683 4
31114 16265083 -17 4 B> 33683 4
31115 16268766 3666 4 33683 B> 4
31116 16268767 3665 4 33683 <H 3
31116 16268767 3665 4 33683 <H 3 [stop]
Lines: 174
Top steps: 172
Macro steps: 31116
Basic steps: 16268767
Tape index: 3665
nonzeros: 3685
log10(nonzeros): 3.566
log10(steps ): 7.211
Run state: stop
Input to awk program:
gohalt 1
nbs 5
T 2-state 5-symbol #b from T.J. & S. Ligocki
: 3685 16268767
5T 4RB 2LA 4LA 4RA 3LA 1LA 4LA 4RA 3RB 3LH
L 10
M 201
pref sim
machv Lig25_b just simple
machv Lig25_b-r with repetitions reduced
machv Lig25_b-1 with tape symbol exponents
machv Lig25_b-m as 1-macro machine
machv Lig25_b-a as 1-macro machine with pure additive config-TRs
iam Lig25_b-a
mtype 1
mmtyp 3
r 1
H 1
mac 0
E 2
sympr
HM 1
date Tue Jul 6 22:12:40 CEST 2010
edate Tue Jul 6 22:12:41 CEST 2010
bnspeed 1
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $
$Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $
$Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $
$Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $
$Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $
$Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $
bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:12:40 CEST 2010