Comment: This TM produces 3685 nonzeros in 16268767 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | 4RB | 2LA | 4LA | 4RA | 3LA | 4 | right | B | 2 | left | A | 4 | left | A | 4 | right | A | 3 | left | A |
B | 1LA | 4LA | 4RA | 3RB | 3LH | 1 | left | A | 4 | left | A | 4 | right | A | 3 | right | B | 3 | left | H |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 4 B> 2 0 4 <A 1 3 -1 <A 3 1 4 0 4 B> 3 1 5 1 4 3 B> 1 6 0 4 3 <A 4 7 1 4 4 A> 4 8 0 4 4 <A 3 + 10 -2 <A 33 11 -1 4 B> 33 + 14 2 4 33 B> 15 1 4 33 <A 1 16 2 4 3 3 4 A> 1 17 1 4 3 3 4 <A 2 18 0 4 3 3 <A 3 2 19 1 4 3 4 A> 3 2 20 2 4 3 4 4 A> 2 21 1 4 3 4 4 <A 4 + 23 -1 4 3 <A 3 3 4 24 0 4 4 A> 3 3 4 + 26 2 44 A> 4 27 1 44 <A 3 + 31 -3 <A 35 32 -2 4 B> 35 + 37 3 4 35 B> 38 2 4 35 <A 1 39 3 4 34 4 A> 1 40 2 4 34 4 <A 2 41 1 4 34 <A 3 2 42 2 4 33 4 A> 3 2 43 3 4 33 4 4 A> 2 44 2 4 33 4 4 <A 4 + 46 0 4 33 <A 3 3 4 47 1 4 3 3 4 A> 3 3 4 + 49 3 4 3 3 43 A> 4 50 2 4 3 3 43 <A 3 + 53 -1 4 3 3 <A 34 54 0 4 3 4 A> 34 + 58 4 4 3 45 A> 59 5 4 3 46 B> 60 4 4 3 46 <A 1 + 66 -2 4 3 <A 36 1 67 -1 4 4 A> 36 1 + 73 5 48 A> 1 74 4 48 <A 2 + 82 -4 <A 38 2 83 -3 4 B> 38 2 + 91 5 4 38 B> 2 92 6 4 38 4 A> 93 7 4 38 4 4 B> 94 6 4 38 4 4 <A 1 + 96 4 4 38 <A 3 3 1 97 5 4 37 4 A> 3 3 1 + 99 7 4 37 43 A> 1 100 6 4 37 43 <A 2 + 103 3 4 37 <A 33 2 104 4 4 36 4 A> 33 2 + 107 7 4 36 44 A> 2 108 6 4 36 44 <A 4 + 112 2 4 36 <A 34 4 113 3 4 35 4 A> 34 4 + 117 7 4 35 45 A> 4 118 6 4 35 45 <A 3 + 123 1 4 35 <A 36 124 2 4 34 4 A> 36 + 130 8 4 34 47 A> 131 9 4 34 48 B> 132 8 4 34 48 <A 1 + 140 0 4 34 <A 38 1 141 1 4 33 4 A> 38 1 + 149 9 4 33 49 A> 1 150 8 4 33 49 <A 2 + 159 -1 4 33 <A 39 2 160 0 4 3 3 4 A> 39 2 + 169 9 4 3 3 410 A> 2 170 8 4 3 3 410 <A 4 + 180 -2 4 3 3 <A 310 4 181 -1 4 3 4 A> 310 4 + 191 9 4 3 411 A> 4 192 8 4 3 411 <A 3 + 203 -3 4 3 <A 312 204 -2 4 4 A> 312 + 216 10 414 A> 217 11 415 B> 218 10 415 <A 1 + 233 -5 <A 315 1 234 -4 4 B> 315 1 + 249 11 4 315 B> 1 250 10 4 315 <A 4 251 11 4 314 4 A> 4 252 10 4 314 4 <A 3 253 9 4 314 <A 3 3 254 10 4 313 4 A> 3 3 + 256 12 4 313 43 A> 257 13 4 313 44 B> 258 12 4 313 44 <A 1 + 262 8 4 313 <A 34 1 263 9 4 312 4 A> 34 1 + 267 13 4 312 45 A> 1 268 12 4 312 45 <A 2 + 273 7 4 312 <A 35 2 274 8 4 311 4 A> 35 2 + 279 13 4 311 46 A> 2 280 12 4 311 46 <A 4 + 286 6 4 311 <A 36 4 287 7 4 310 4 A> 36 4 + 293 13 4 310 47 A> 4 294 12 4 310 47 <A 3 + 301 5 4 310 <A 38 302 6 4 39 4 A> 38 + 310 14 4 39 49 A> 311 15 4 39 410 B> 312 14 4 39 410 <A 1 + 322 4 4 39 <A 310 1 323 5 4 38 4 A> 310 1 + 333 15 4 38 411 A> 1 334 14 4 38 411 <A 2 + 345 3 4 38 <A 311 2 346 4 4 37 4 A> 311 2 + 357 15 4 37 412 A> 2 358 14 4 37 412 <A 4 + 370 2 4 37 <A 312 4 371 3 4 36 4 A> 312 4 + 383 15 4 36 413 A> 4 384 14 4 36 413 <A 3 + 397 1 4 36 <A 314 398 2 4 35 4 A> 314 + 412 16 4 35 415 A> 413 17 4 35 416 B> 414 16 4 35 416 <A 1 + 430 0 4 35 <A 316 1 431 1 4 34 4 A> 316 1 + 447 17 4 34 417 A> 1 448 16 4 34 417 <A 2 + 465 -1 4 34 <A 317 2 466 0 4 33 4 A> 317 2 + 483 17 4 33 418 A> 2 484 16 4 33 418 <A 4 + 502 -2 4 33 <A 318 4 503 -1 4 3 3 4 A> 318 4 + 521 17 4 3 3 419 A> 4 522 16 4 3 3 419 <A 3 + 541 -3 4 3 3 <A 320 542 -2 4 3 4 A> 320 + 562 18 4 3 421 A> 563 19 4 3 422 B> 564 18 4 3 422 <A 1 + 586 -4 4 3 <A 322 1 587 -3 4 4 A> 322 1 + 609 19 424 A> 1 610 18 424 <A 2 + 634 -6 <A 324 2 635 -5 4 B> 324 2 + 659 19 4 324 B> 2 660 20 4 324 4 A> 661 21 4 324 4 4 B> 662 20 4 324 4 4 <A 1 + 664 18 4 324 <A 3 3 1 665 19 4 323 4 A> 3 3 1 + 667 21 4 323 43 A> 1 668 20 4 323 43 <A 2 + 671 17 4 323 <A 33 2 672 18 4 322 4 A> 33 2 + 675 21 4 322 44 A> 2 676 20 4 322 44 <A 4 + 680 16 4 322 <A 34 4 681 17 4 321 4 A> 34 4 + 685 21 4 321 45 A> 4 686 20 4 321 45 <A 3 + 691 15 4 321 <A 36 692 16 4 320 4 A> 36 + 698 22 4 320 47 A> 699 23 4 320 48 B> 700 22 4 320 48 <A 1 + 708 14 4 320 <A 38 1 709 15 4 319 4 A> 38 1 + 717 23 4 319 49 A> 1 718 22 4 319 49 <A 2 + 727 13 4 319 <A 39 2 728 14 4 318 4 A> 39 2 + 737 23 4 318 410 A> 2 738 22 4 318 410 <A 4 + 748 12 4 318 <A 310 4 749 13 4 317 4 A> 310 4 + 759 23 4 317 411 A> 4 760 22 4 317 411 <A 3 + 771 11 4 317 <A 312 772 12 4 316 4 A> 312 + 784 24 4 316 413 A> 785 25 4 316 414 B> 786 24 4 316 414 <A 1 + 800 10 4 316 <A 314 1 801 11 4 315 4 A> 314 1 + 815 25 4 315 415 A> 1 816 24 4 315 415 <A 2 + 831 9 4 315 <A 315 2 832 10 4 314 4 A> 315 2 + 847 25 4 314 416 A> 2 848 24 4 314 416 <A 4 + 864 8 4 314 <A 316 4 After 864 steps (201 lines): state = A. Produced 32 nonzeros. Tape index 8, scanned [-6 .. 25].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 790 | 18 | 12 | 10 | 360 | 390 | 0 | 16 | 20 | 6 | 2 |
B | 74 | 14 | 2 | 2 | 56 | 1 | 5 | 91 | 4 |