Comment: This TM produces 3685 nonzeros in 16268767 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | 4RB | 2LA | 4LA | 4RA | 3LA | 4 | right | B | 2 | left | A | 4 | left | A | 4 | right | A | 3 | left | A |
| B | 1LA | 4LA | 4RA | 3RB | 3LH | 1 | left | A | 4 | left | A | 4 | right | A | 3 | right | B | 3 | left | H |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 4 B>
2 0 4 <A 1
3 -1 <A 3 1
4 0 4 B> 3 1
5 1 4 3 B> 1
6 0 4 3 <A 4
7 1 4 4 A> 4
8 0 4 4 <A 3
+ 10 -2 <A 33
11 -1 4 B> 33
+ 14 2 4 33 B>
15 1 4 33 <A 1
16 2 4 3 3 4 A> 1
17 1 4 3 3 4 <A 2
18 0 4 3 3 <A 3 2
19 1 4 3 4 A> 3 2
20 2 4 3 4 4 A> 2
21 1 4 3 4 4 <A 4
+ 23 -1 4 3 <A 3 3 4
24 0 4 4 A> 3 3 4
+ 26 2 44 A> 4
27 1 44 <A 3
+ 31 -3 <A 35
32 -2 4 B> 35
+ 37 3 4 35 B>
38 2 4 35 <A 1
39 3 4 34 4 A> 1
40 2 4 34 4 <A 2
41 1 4 34 <A 3 2
42 2 4 33 4 A> 3 2
43 3 4 33 4 4 A> 2
44 2 4 33 4 4 <A 4
+ 46 0 4 33 <A 3 3 4
47 1 4 3 3 4 A> 3 3 4
+ 49 3 4 3 3 43 A> 4
50 2 4 3 3 43 <A 3
+ 53 -1 4 3 3 <A 34
54 0 4 3 4 A> 34
+ 58 4 4 3 45 A>
59 5 4 3 46 B>
60 4 4 3 46 <A 1
+ 66 -2 4 3 <A 36 1
67 -1 4 4 A> 36 1
+ 73 5 48 A> 1
74 4 48 <A 2
+ 82 -4 <A 38 2
83 -3 4 B> 38 2
+ 91 5 4 38 B> 2
92 6 4 38 4 A>
93 7 4 38 4 4 B>
94 6 4 38 4 4 <A 1
+ 96 4 4 38 <A 3 3 1
97 5 4 37 4 A> 3 3 1
+ 99 7 4 37 43 A> 1
100 6 4 37 43 <A 2
+ 103 3 4 37 <A 33 2
104 4 4 36 4 A> 33 2
+ 107 7 4 36 44 A> 2
108 6 4 36 44 <A 4
+ 112 2 4 36 <A 34 4
113 3 4 35 4 A> 34 4
+ 117 7 4 35 45 A> 4
118 6 4 35 45 <A 3
+ 123 1 4 35 <A 36
124 2 4 34 4 A> 36
+ 130 8 4 34 47 A>
131 9 4 34 48 B>
132 8 4 34 48 <A 1
+ 140 0 4 34 <A 38 1
141 1 4 33 4 A> 38 1
+ 149 9 4 33 49 A> 1
150 8 4 33 49 <A 2
+ 159 -1 4 33 <A 39 2
160 0 4 3 3 4 A> 39 2
+ 169 9 4 3 3 410 A> 2
170 8 4 3 3 410 <A 4
+ 180 -2 4 3 3 <A 310 4
181 -1 4 3 4 A> 310 4
+ 191 9 4 3 411 A> 4
192 8 4 3 411 <A 3
+ 203 -3 4 3 <A 312
204 -2 4 4 A> 312
+ 216 10 414 A>
217 11 415 B>
218 10 415 <A 1
+ 233 -5 <A 315 1
234 -4 4 B> 315 1
+ 249 11 4 315 B> 1
250 10 4 315 <A 4
251 11 4 314 4 A> 4
252 10 4 314 4 <A 3
253 9 4 314 <A 3 3
254 10 4 313 4 A> 3 3
+ 256 12 4 313 43 A>
257 13 4 313 44 B>
258 12 4 313 44 <A 1
+ 262 8 4 313 <A 34 1
263 9 4 312 4 A> 34 1
+ 267 13 4 312 45 A> 1
268 12 4 312 45 <A 2
+ 273 7 4 312 <A 35 2
274 8 4 311 4 A> 35 2
+ 279 13 4 311 46 A> 2
280 12 4 311 46 <A 4
+ 286 6 4 311 <A 36 4
287 7 4 310 4 A> 36 4
+ 293 13 4 310 47 A> 4
294 12 4 310 47 <A 3
+ 301 5 4 310 <A 38
302 6 4 39 4 A> 38
+ 310 14 4 39 49 A>
311 15 4 39 410 B>
312 14 4 39 410 <A 1
+ 322 4 4 39 <A 310 1
323 5 4 38 4 A> 310 1
+ 333 15 4 38 411 A> 1
334 14 4 38 411 <A 2
+ 345 3 4 38 <A 311 2
346 4 4 37 4 A> 311 2
+ 357 15 4 37 412 A> 2
358 14 4 37 412 <A 4
+ 370 2 4 37 <A 312 4
371 3 4 36 4 A> 312 4
+ 383 15 4 36 413 A> 4
384 14 4 36 413 <A 3
+ 397 1 4 36 <A 314
398 2 4 35 4 A> 314
+ 412 16 4 35 415 A>
413 17 4 35 416 B>
414 16 4 35 416 <A 1
+ 430 0 4 35 <A 316 1
431 1 4 34 4 A> 316 1
+ 447 17 4 34 417 A> 1
448 16 4 34 417 <A 2
+ 465 -1 4 34 <A 317 2
466 0 4 33 4 A> 317 2
+ 483 17 4 33 418 A> 2
484 16 4 33 418 <A 4
+ 502 -2 4 33 <A 318 4
503 -1 4 3 3 4 A> 318 4
+ 521 17 4 3 3 419 A> 4
522 16 4 3 3 419 <A 3
+ 541 -3 4 3 3 <A 320
542 -2 4 3 4 A> 320
+ 562 18 4 3 421 A>
563 19 4 3 422 B>
564 18 4 3 422 <A 1
+ 586 -4 4 3 <A 322 1
587 -3 4 4 A> 322 1
+ 609 19 424 A> 1
610 18 424 <A 2
+ 634 -6 <A 324 2
635 -5 4 B> 324 2
+ 659 19 4 324 B> 2
660 20 4 324 4 A>
661 21 4 324 4 4 B>
662 20 4 324 4 4 <A 1
+ 664 18 4 324 <A 3 3 1
665 19 4 323 4 A> 3 3 1
+ 667 21 4 323 43 A> 1
668 20 4 323 43 <A 2
+ 671 17 4 323 <A 33 2
672 18 4 322 4 A> 33 2
+ 675 21 4 322 44 A> 2
676 20 4 322 44 <A 4
+ 680 16 4 322 <A 34 4
681 17 4 321 4 A> 34 4
+ 685 21 4 321 45 A> 4
686 20 4 321 45 <A 3
+ 691 15 4 321 <A 36
692 16 4 320 4 A> 36
+ 698 22 4 320 47 A>
699 23 4 320 48 B>
700 22 4 320 48 <A 1
+ 708 14 4 320 <A 38 1
709 15 4 319 4 A> 38 1
+ 717 23 4 319 49 A> 1
718 22 4 319 49 <A 2
+ 727 13 4 319 <A 39 2
728 14 4 318 4 A> 39 2
+ 737 23 4 318 410 A> 2
738 22 4 318 410 <A 4
+ 748 12 4 318 <A 310 4
749 13 4 317 4 A> 310 4
+ 759 23 4 317 411 A> 4
760 22 4 317 411 <A 3
+ 771 11 4 317 <A 312
772 12 4 316 4 A> 312
+ 784 24 4 316 413 A>
785 25 4 316 414 B>
786 24 4 316 414 <A 1
+ 800 10 4 316 <A 314 1
801 11 4 315 4 A> 314 1
+ 815 25 4 315 415 A> 1
816 24 4 315 415 <A 2
+ 831 9 4 315 <A 315 2
832 10 4 314 4 A> 315 2
+ 847 25 4 314 416 A> 2
848 24 4 314 416 <A 4
+ 864 8 4 314 <A 316 4
After 864 steps (201 lines): state = A.
Produced 32 nonzeros.
Tape index 8, scanned [-6 .. 25].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 790 | 18 | 12 | 10 | 360 | 390 | 0 | 16 | 20 | 6 | 2 |
| B | 74 | 14 | 2 | 2 | 56 | 1 | 5 | 91 | 4 | ||