2-state 5-symbol #b from T.J. & S. Ligocki

Comment: This TM produces 3685 nonzeros in 16268767 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 4RB 2LA 4LA 4RA 3LA 4 right B 2 left A 4 left A 4 right A 3 left A
B 1LA 4LA 4RA 3RB 3LH 1 left A 4 left A 4 right A 3 right B 3 left H
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  4 B>
     2     0  4 <A 1
     3    -1  <A 3 1
     4     0  4 B> 3 1
     5     1  4 3 B> 1
     6     0  4 3 <A 4
     7     1  4 4 A> 4
     8     0  4 4 <A 3
+   10    -2  <A 33
    11    -1  4 B> 33
+   14     2  4 33 B>
    15     1  4 33 <A 1
    16     2  4 3 3 4 A> 1
    17     1  4 3 3 4 <A 2
    18     0  4 3 3 <A 3 2
    19     1  4 3 4 A> 3 2
    20     2  4 3 4 4 A> 2
    21     1  4 3 4 4 <A 4
+   23    -1  4 3 <A 3 3 4
    24     0  4 4 A> 3 3 4
+   26     2  44 A> 4
    27     1  44 <A 3
+   31    -3  <A 35
    32    -2  4 B> 35
+   37     3  4 35 B>
    38     2  4 35 <A 1
    39     3  4 34 4 A> 1
    40     2  4 34 4 <A 2
    41     1  4 34 <A 3 2
    42     2  4 33 4 A> 3 2
    43     3  4 33 4 4 A> 2
    44     2  4 33 4 4 <A 4
+   46     0  4 33 <A 3 3 4
    47     1  4 3 3 4 A> 3 3 4
+   49     3  4 3 3 43 A> 4
    50     2  4 3 3 43 <A 3
+   53    -1  4 3 3 <A 34
    54     0  4 3 4 A> 34
+   58     4  4 3 45 A>
    59     5  4 3 46 B>
    60     4  4 3 46 <A 1
+   66    -2  4 3 <A 36 1
    67    -1  4 4 A> 36 1
+   73     5  48 A> 1
    74     4  48 <A 2
+   82    -4  <A 38 2
    83    -3  4 B> 38 2
+   91     5  4 38 B> 2
    92     6  4 38 4 A>
    93     7  4 38 4 4 B>
    94     6  4 38 4 4 <A 1
+   96     4  4 38 <A 3 3 1
    97     5  4 37 4 A> 3 3 1
+   99     7  4 37 43 A> 1
   100     6  4 37 43 <A 2
+  103     3  4 37 <A 33 2
   104     4  4 36 4 A> 33 2
+  107     7  4 36 44 A> 2
   108     6  4 36 44 <A 4
+  112     2  4 36 <A 34 4
   113     3  4 35 4 A> 34 4
+  117     7  4 35 45 A> 4
   118     6  4 35 45 <A 3
+  123     1  4 35 <A 36
   124     2  4 34 4 A> 36
+  130     8  4 34 47 A>
   131     9  4 34 48 B>
   132     8  4 34 48 <A 1
+  140     0  4 34 <A 38 1
   141     1  4 33 4 A> 38 1
+  149     9  4 33 49 A> 1
   150     8  4 33 49 <A 2
+  159    -1  4 33 <A 39 2
   160     0  4 3 3 4 A> 39 2
+  169     9  4 3 3 410 A> 2
   170     8  4 3 3 410 <A 4
+  180    -2  4 3 3 <A 310 4
   181    -1  4 3 4 A> 310 4
+  191     9  4 3 411 A> 4
   192     8  4 3 411 <A 3
+  203    -3  4 3 <A 312
   204    -2  4 4 A> 312
+  216    10  414 A>
   217    11  415 B>
   218    10  415 <A 1
+  233    -5  <A 315 1
   234    -4  4 B> 315 1
+  249    11  4 315 B> 1
   250    10  4 315 <A 4
   251    11  4 314 4 A> 4
   252    10  4 314 4 <A 3
   253     9  4 314 <A 3 3
   254    10  4 313 4 A> 3 3
+  256    12  4 313 43 A>
   257    13  4 313 44 B>
   258    12  4 313 44 <A 1
+  262     8  4 313 <A 34 1
   263     9  4 312 4 A> 34 1
+  267    13  4 312 45 A> 1
   268    12  4 312 45 <A 2
+  273     7  4 312 <A 35 2
   274     8  4 311 4 A> 35 2
+  279    13  4 311 46 A> 2
   280    12  4 311 46 <A 4
+  286     6  4 311 <A 36 4
   287     7  4 310 4 A> 36 4
+  293    13  4 310 47 A> 4
   294    12  4 310 47 <A 3
+  301     5  4 310 <A 38
   302     6  4 39 4 A> 38
+  310    14  4 39 49 A>
   311    15  4 39 410 B>
   312    14  4 39 410 <A 1
+  322     4  4 39 <A 310 1
   323     5  4 38 4 A> 310 1
+  333    15  4 38 411 A> 1
   334    14  4 38 411 <A 2
+  345     3  4 38 <A 311 2
   346     4  4 37 4 A> 311 2
+  357    15  4 37 412 A> 2
   358    14  4 37 412 <A 4
+  370     2  4 37 <A 312 4
   371     3  4 36 4 A> 312 4
+  383    15  4 36 413 A> 4
   384    14  4 36 413 <A 3
+  397     1  4 36 <A 314
   398     2  4 35 4 A> 314
+  412    16  4 35 415 A>
   413    17  4 35 416 B>
   414    16  4 35 416 <A 1
+  430     0  4 35 <A 316 1
   431     1  4 34 4 A> 316 1
+  447    17  4 34 417 A> 1
   448    16  4 34 417 <A 2
+  465    -1  4 34 <A 317 2
   466     0  4 33 4 A> 317 2
+  483    17  4 33 418 A> 2
   484    16  4 33 418 <A 4
+  502    -2  4 33 <A 318 4
   503    -1  4 3 3 4 A> 318 4
+  521    17  4 3 3 419 A> 4
   522    16  4 3 3 419 <A 3
+  541    -3  4 3 3 <A 320
   542    -2  4 3 4 A> 320
+  562    18  4 3 421 A>
   563    19  4 3 422 B>
   564    18  4 3 422 <A 1
+  586    -4  4 3 <A 322 1
   587    -3  4 4 A> 322 1
+  609    19  424 A> 1
   610    18  424 <A 2
+  634    -6  <A 324 2
   635    -5  4 B> 324 2
+  659    19  4 324 B> 2
   660    20  4 324 4 A>
   661    21  4 324 4 4 B>
   662    20  4 324 4 4 <A 1
+  664    18  4 324 <A 3 3 1
   665    19  4 323 4 A> 3 3 1
+  667    21  4 323 43 A> 1
   668    20  4 323 43 <A 2
+  671    17  4 323 <A 33 2
   672    18  4 322 4 A> 33 2
+  675    21  4 322 44 A> 2
   676    20  4 322 44 <A 4
+  680    16  4 322 <A 34 4
   681    17  4 321 4 A> 34 4
+  685    21  4 321 45 A> 4
   686    20  4 321 45 <A 3
+  691    15  4 321 <A 36
   692    16  4 320 4 A> 36
+  698    22  4 320 47 A>
   699    23  4 320 48 B>
   700    22  4 320 48 <A 1
+  708    14  4 320 <A 38 1
   709    15  4 319 4 A> 38 1
+  717    23  4 319 49 A> 1
   718    22  4 319 49 <A 2
+  727    13  4 319 <A 39 2
   728    14  4 318 4 A> 39 2
+  737    23  4 318 410 A> 2
   738    22  4 318 410 <A 4
+  748    12  4 318 <A 310 4
   749    13  4 317 4 A> 310 4
+  759    23  4 317 411 A> 4
   760    22  4 317 411 <A 3
+  771    11  4 317 <A 312
   772    12  4 316 4 A> 312
+  784    24  4 316 413 A>
   785    25  4 316 414 B>
   786    24  4 316 414 <A 1
+  800    10  4 316 <A 314 1
   801    11  4 315 4 A> 314 1
+  815    25  4 315 415 A> 1
   816    24  4 315 415 <A 2
+  831     9  4 315 <A 315 2
   832    10  4 314 4 A> 315 2
+  847    25  4 314 416 A> 2
   848    24  4 314 416 <A 4
+  864     8  4 314 <A 316 4

After 864 steps (201 lines): state = A.
Produced     32 nonzeros.
Tape index 8, scanned [-6 .. 25].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 790 18 12 10 360 390 0 16 20 6 2
B 74 14 2 2 56   1 5 91 4  
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:40 CEST 2010