Comment: This TM produces 4099 nonzeros in 15754273 steps.
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | 4LB | 1RH | 2RA | 0LB | 3LB | 4 | left | B | 1 | right | H | 2 | right | A | 0 | left | B | 3 | left | B |
| B | 2RA | 3LB | 3RB | 2LB | 1LB | 2 | right | A | 3 | left | B | 3 | right | B | 2 | left | B | 1 | left | B |
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Pushing initial machine.
Pushing macro factor 1.
Steps BasSteps BasTpos Tape contents
0 0 0 A>
1 1 -1 <B 4
2 2 0 2 A> 4
3 3 -1 2 <B 3
4 4 0 3 B> 3
5 5 -1 3 <B 2
6 6 -2 <B 22
7 7 -1 2 A> 22
8 9 1 23 A>
9 10 0 23 <B 4
10 11 1 22 3 B> 4
11 12 0 22 3 <B 1
12 13 -1 22 <B 2 1
13 14 0 2 3 B> 2 1
14 15 1 2 32 B> 1
15 16 0 2 32 <B 3
16 18 -2 2 <B 22 3
17 19 -1 3 B> 22 3
18 21 1 33 B> 3
19 22 0 33 <B 2
20 25 -3 <B 24
21 26 -2 2 A> 24
22 30 2 25 A>
23 31 1 25 <B 4
24 32 2 24 3 B> 4
25 33 1 24 3 <B 1
26 34 0 24 <B 2 1
27 35 1 23 3 B> 2 1
28 36 2 23 32 B> 1
29 37 1 23 32 <B 3
30 39 -1 23 <B 22 3
31 40 0 22 3 B> 22 3
32 42 2 22 33 B> 3
33 43 1 22 33 <B 2
34 46 -2 22 <B 24
35 47 -1 2 3 B> 24
36 51 3 2 35 B>
37 52 4 2 35 2 A>
38 53 3 2 35 2 <B 4
39 54 4 2 36 B> 4
40 55 3 2 36 <B 1
41 61 -3 2 <B 26 1
42 62 -2 3 B> 26 1
43 68 4 37 B> 1
44 69 3 37 <B 3
45 76 -4 <B 27 3
46 77 -3 2 A> 27 3
47 84 4 28 A> 3
48 85 3 28 <B
49 86 4 27 3 B>
50 87 5 27 3 2 A>
51 88 4 27 3 2 <B 4
52 89 5 27 32 B> 4
53 90 4 27 32 <B 1
54 92 2 27 <B 22 1
55 93 3 26 3 B> 22 1
56 95 5 26 33 B> 1
57 96 4 26 33 <B 3
58 99 1 26 <B 23 3
59 100 2 25 3 B> 23 3
60 103 5 25 34 B> 3
61 104 4 25 34 <B 2
62 108 0 25 <B 25
63 109 1 24 3 B> 25
64 114 6 24 36 B>
65 115 7 24 36 2 A>
66 116 6 24 36 2 <B 4
67 117 7 24 37 B> 4
68 118 6 24 37 <B 1
69 125 -1 24 <B 27 1
70 126 0 23 3 B> 27 1
71 133 7 23 38 B> 1
72 134 6 23 38 <B 3
73 142 -2 23 <B 28 3
74 143 -1 22 3 B> 28 3
75 151 7 22 39 B> 3
76 152 6 22 39 <B 2
77 161 -3 22 <B 210
78 162 -2 2 3 B> 210
79 172 8 2 311 B>
80 173 9 2 311 2 A>
81 174 8 2 311 2 <B 4
82 175 9 2 312 B> 4
83 176 8 2 312 <B 1
84 188 -4 2 <B 212 1
85 189 -3 3 B> 212 1
86 201 9 313 B> 1
87 202 8 313 <B 3
88 215 -5 <B 213 3
89 216 -4 2 A> 213 3
90 229 9 214 A> 3
91 230 8 214 <B
92 231 9 213 3 B>
93 232 10 213 3 2 A>
94 233 9 213 3 2 <B 4
95 234 10 213 32 B> 4
96 235 9 213 32 <B 1
97 237 7 213 <B 22 1
98 238 8 212 3 B> 22 1
99 240 10 212 33 B> 1
100 241 9 212 33 <B 3
101 244 6 212 <B 23 3
102 245 7 211 3 B> 23 3
103 248 10 211 34 B> 3
104 249 9 211 34 <B 2
105 253 5 211 <B 25
106 254 6 210 3 B> 25
107 259 11 210 36 B>
108 260 12 210 36 2 A>
109 261 11 210 36 2 <B 4
110 262 12 210 37 B> 4
111 263 11 210 37 <B 1
112 270 4 210 <B 27 1
113 271 5 29 3 B> 27 1
114 278 12 29 38 B> 1
115 279 11 29 38 <B 3
116 287 3 29 <B 28 3
117 288 4 28 3 B> 28 3
118 296 12 28 39 B> 3
119 297 11 28 39 <B 2
120 306 2 28 <B 210
121 307 3 27 3 B> 210
122 317 13 27 311 B>
123 318 14 27 311 2 A>
124 319 13 27 311 2 <B 4
125 320 14 27 312 B> 4
126 321 13 27 312 <B 1
127 333 1 27 <B 212 1
128 334 2 26 3 B> 212 1
129 346 14 26 313 B> 1
130 347 13 26 313 <B 3
131 360 0 26 <B 213 3
132 361 1 25 3 B> 213 3
133 374 14 25 314 B> 3
134 375 13 25 314 <B 2
135 389 -1 25 <B 215
136 390 0 24 3 B> 215
137 405 15 24 316 B>
138 406 16 24 316 2 A>
139 407 15 24 316 2 <B 4
140 408 16 24 317 B> 4
141 409 15 24 317 <B 1
142 426 -2 24 <B 217 1
143 427 -1 23 3 B> 217 1
144 444 16 23 318 B> 1
145 445 15 23 318 <B 3
146 463 -3 23 <B 218 3
147 464 -2 22 3 B> 218 3
148 482 16 22 319 B> 3
149 483 15 22 319 <B 2
150 502 -4 22 <B 220
151 503 -3 2 3 B> 220
152 523 17 2 321 B>
153 524 18 2 321 2 A>
154 525 17 2 321 2 <B 4
155 526 18 2 322 B> 4
156 527 17 2 322 <B 1
157 549 -5 2 <B 222 1
158 550 -4 3 B> 222 1
159 572 18 323 B> 1
160 573 17 323 <B 3
161 596 -6 <B 223 3
162 597 -5 2 A> 223 3
163 620 18 224 A> 3
164 621 17 224 <B
165 622 18 223 3 B>
166 623 19 223 3 2 A>
167 624 18 223 3 2 <B 4
168 625 19 223 32 B> 4
169 626 18 223 32 <B 1
170 628 16 223 <B 22 1
171 629 17 222 3 B> 22 1
172 631 19 222 33 B> 1
173 632 18 222 33 <B 3
174 635 15 222 <B 23 3
175 636 16 221 3 B> 23 3
176 639 19 221 34 B> 3
177 640 18 221 34 <B 2
178 644 14 221 <B 25
179 645 15 220 3 B> 25
180 650 20 220 36 B>
181 651 21 220 36 2 A>
182 652 20 220 36 2 <B 4
183 653 21 220 37 B> 4
184 654 20 220 37 <B 1
185 661 13 220 <B 27 1
186 662 14 219 3 B> 27 1
187 669 21 219 38 B> 1
188 670 20 219 38 <B 3
189 678 12 219 <B 28 3
190 679 13 218 3 B> 28 3
191 687 21 218 39 B> 3
192 688 20 218 39 <B 2
193 697 11 218 <B 210
194 698 12 217 3 B> 210
195 708 22 217 311 B>
196 709 23 217 311 2 A>
197 710 22 217 311 2 <B 4
198 711 23 217 312 B> 4
199 712 22 217 312 <B 1
200 724 10 217 <B 212 1
Lines: 201
Top steps: 200
Macro steps: 200
Basic steps: 724
Tape index: 10
nonzeros: 30
log10(nonzeros): 1.477
log10(steps ): 2.860
Input to awk program:
gohalt 1
nbs 5
T 2-state 5-symbol #a from T.J. & S. Ligocki
: 4099 15754273
5T 4LB 1RH 2RA 0LB 3LB 2RA 3LB 3RB 2LB 1LB
L 10
M 201
pref sim
machv Lig25_a just simple
machv Lig25_a-r with repetitions reduced
machv Lig25_a-1 with tape symbol exponents
machv Lig25_a-m as 1-macro machine
machv Lig25_a-a as 1-macro machine with pure additive config-TRs
iam Lig25_a-m
mtype 1
mmtyp 1
r 1
H 1
mac 0
E 2
sympr
HM 1
date Tue Jul 6 22:12:39 CEST 2010
edate Tue Jul 6 22:12:39 CEST 2010
bnspeed 1
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $
$Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $
$Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $
$Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $
$Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $
$Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $
bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:12:39 CEST 2010