Comment: This TM produces 4099 nonzeros in 15754273 steps.
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | 4LB | 1RH | 2RA | 0LB | 3LB | 4 | left | B | 1 | right | H | 2 | right | A | 0 | left | B | 3 | left | B |
B | 2RA | 3LB | 3RB | 2LB | 1LB | 2 | right | A | 3 | left | B | 3 | right | B | 2 | left | B | 1 | left | B |
The same TM just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as 1-macro machine. Simulation is done as 1-macro machine with pure additive config-TRs. Pushing initial machine. Pushing macro factor 1. Steps BasSteps BasTpos Tape contents 0 0 0 A> 1 1 -1 <B 4 2 2 0 2 A> 4 3 3 -1 2 <B 3 4 4 0 3 B> 3 5 5 -1 3 <B 2 6 6 -2 <B 22 7 7 -1 2 A> 22 8 9 1 23 A> 9 10 0 23 <B 4 10 11 1 22 3 B> 4 11 12 0 22 3 <B 1 12 13 -1 22 <B 2 1 13 14 0 2 3 B> 2 1 14 15 1 2 32 B> 1 15 16 0 2 32 <B 3 16 18 -2 2 <B 22 3 17 19 -1 3 B> 22 3 18 21 1 33 B> 3 19 22 0 33 <B 2 20 25 -3 <B 24 21 26 -2 2 A> 24 22 30 2 25 A> 23 31 1 25 <B 4 24 32 2 24 3 B> 4 25 33 1 24 3 <B 1 26 34 0 24 <B 2 1 27 35 1 23 3 B> 2 1 28 36 2 23 32 B> 1 29 37 1 23 32 <B 3 30 39 -1 23 <B 22 3 31 40 0 22 3 B> 22 3 32 42 2 22 33 B> 3 33 43 1 22 33 <B 2 34 46 -2 22 <B 24 35 47 -1 2 3 B> 24 36 51 3 2 35 B> 37 52 4 2 35 2 A> 38 53 3 2 35 2 <B 4 39 54 4 2 36 B> 4 >> Try to prove a PA-CTR with 2 Vars... 0 0 0 24+V(2) 31+V(1) B> 4 1 1 -1 24+V(2) 31+V(1) <B 1 2 2+V(1) -2+-1*V(1) 24+V(2) <B 21+V(1) 1 3 3+V(1) -1+-1*V(1) 23+V(2) 3 B> 21+V(1) 1 4 4+2*V(1) 0 23+V(2) 32+V(1) B> 1 5 5+2*V(1) -1 23+V(2) 32+V(1) <B 3 6 7+3*V(1) -3+-1*V(1) 23+V(2) <B 22+V(1) 3 7 8+3*V(1) -2+-1*V(1) 22+V(2) 3 B> 22+V(1) 3 8 10+4*V(1) 0 22+V(2) 33+V(1) B> 3 9 11+4*V(1) -1 22+V(2) 33+V(1) <B 2 10 14+5*V(1) -4+-1*V(1) 22+V(2) <B 24+V(1) 11 15+5*V(1) -3+-1*V(1) 21+V(2) 3 B> 24+V(1) 12 19+6*V(1) 1 21+V(2) 35+V(1) B> 13 20+6*V(1) 2 21+V(2) 35+V(1) 2 A> 14 21+6*V(1) 1 21+V(2) 35+V(1) 2 <B 4 15 22+6*V(1) 2 21+V(2) 36+V(1) B> 4 << Success! ==> defined new CTR 1 (PA) 40 55 3 2 36 <B 1 41 61 -3 2 <B 26 1 42 62 -2 3 B> 26 1 43 68 4 37 B> 1 44 69 3 37 <B 3 45 76 -4 <B 27 3 46 77 -3 2 A> 27 3 47 84 4 28 A> 3 48 85 3 28 <B 49 86 4 27 3 B> 50 87 5 27 3 2 A> 51 88 4 27 3 2 <B 4 52 89 5 27 32 B> 4 >> Try to prove a PPA-CTR with 1 Vars... 0 0 0 2 33+V(1) B> 4 1 1 -1 2 33+V(1) <B 1 2 4+V(1) -4+-1*V(1) 2 <B 23+V(1) 1 3 5+V(1) -3+-1*V(1) 3 B> 23+V(1) 1 4 8+2*V(1) 0 34+V(1) B> 1 5 9+2*V(1) -1 34+V(1) <B 3 6 13+3*V(1) -5+-1*V(1) <B 24+V(1) 3 7 14+3*V(1) -4+-1*V(1) 2 A> 24+V(1) 3 8 18+4*V(1) 0 25+V(1) A> 3 9 19+4*V(1) -1 25+V(1) <B 10 20+4*V(1) 0 24+V(1) 3 B> 11 21+4*V(1) 1 24+V(1) 3 2 A> 12 22+4*V(1) 0 24+V(1) 3 2 <B 4 13 23+4*V(1) 1 24+V(1) 32 B> 4 << Success! ==> defined new CTR 2 (PPA) 52 89 5 27 32 B> 4 == Executing PA-CTR 1, V(1)=1, V(2)=3, repcount=2, factor=5/3 82 175 9 2 312 B> 4 == Executing PPA-CTR 2 (once), V(1)=9 95 234 10 213 32 B> 4 == Executing PA-CTR 1, V(1)=1, V(2)=9, repcount=4, factor=5/3 155 526 18 2 322 B> 4 == Executing PPA-CTR 2 (once), V(1)=19 168 625 19 223 32 B> 4 == Executing PA-CTR 1, V(1)=1, V(2)=19, repcount=7, factor=5/3 273 1451 33 22 337 B> 4 274 1452 32 22 337 <B 1 275 1489 -5 22 <B 237 1 276 1490 -4 2 3 B> 237 1 277 1527 33 2 338 B> 1 278 1528 32 2 338 <B 3 279 1566 -6 2 <B 238 3 280 1567 -5 3 B> 238 3 281 1605 33 339 B> 3 282 1606 32 339 <B 2 283 1645 -7 <B 240 284 1646 -6 2 A> 240 285 1686 34 241 A> 286 1687 33 241 <B 4 287 1688 34 240 3 B> 4 >> Try to prove a PPA-CTR with 1 Vars... 0 0 0 22 31+V(1) B> 4 1 1 -1 22 31+V(1) <B 1 2 2+V(1) -2+-1*V(1) 22 <B 21+V(1) 1 3 3+V(1) -1+-1*V(1) 2 3 B> 21+V(1) 1 4 4+2*V(1) 0 2 32+V(1) B> 1 5 5+2*V(1) -1 2 32+V(1) <B 3 6 7+3*V(1) -3+-1*V(1) 2 <B 22+V(1) 3 7 8+3*V(1) -2+-1*V(1) 3 B> 22+V(1) 3 8 10+4*V(1) 0 33+V(1) B> 3 9 11+4*V(1) -1 33+V(1) <B 2 10 14+5*V(1) -4+-1*V(1) <B 24+V(1) 11 15+5*V(1) -3+-1*V(1) 2 A> 24+V(1) 12 19+6*V(1) 1 25+V(1) A> 13 20+6*V(1) 0 25+V(1) <B 4 14 21+6*V(1) 1 24+V(1) 3 B> 4 << Success! ==> defined new CTR 3 (PPA) 287 1688 34 240 3 B> 4 == Executing PA-CTR 1, V(1)=0, V(2)=36, repcount=13, factor=5/3 482 4314 60 2 366 B> 4 == Executing PPA-CTR 2 (once), V(1)=63 495 4589 61 267 32 B> 4 == Executing PA-CTR 1, V(1)=1, V(2)=63, repcount=22, factor=5/3 825 12135 105 2 3112 B> 4 == Executing PPA-CTR 2 (once), V(1)=109 838 12594 106 2113 32 B> 4 == Executing PA-CTR 1, V(1)=1, V(2)=109, repcount=37, factor=5/3 1393 33610 180 22 3187 B> 4 == Executing PPA-CTR 3 (once), V(1)=186 1407 34747 181 2190 3 B> 4 == Executing PA-CTR 1, V(1)=0, V(2)=186, repcount=63, factor=5/3 2352 94723 307 2 3316 B> 4 == Executing PPA-CTR 2 (once), V(1)=313 2365 95998 308 2317 32 B> 4 == Executing PA-CTR 1, V(1)=1, V(2)=313, repcount=105, factor=5/3 3940 262738 518 22 3527 B> 4 == Executing PPA-CTR 3 (once), V(1)=526 3954 265915 519 2530 3 B> 4 == Executing PA-CTR 1, V(1)=0, V(2)=526, repcount=176, factor=5/3 6594 731787 871 22 3881 B> 4 == Executing PPA-CTR 3 (once), V(1)=880 6608 737088 872 2884 3 B> 4 == Executing PA-CTR 1, V(1)=0, V(2)=880, repcount=294, factor=5/3 11018 2035686 1460 22 31471 B> 4 == Executing PPA-CTR 3 (once), V(1)=1470 11032 2044527 1461 21474 3 B> 4 == Executing PA-CTR 1, V(1)=0, V(2)=1470, repcount=491, factor=5/3 18397 5664179 2443 2 32456 B> 4 == Executing PPA-CTR 2 (once), V(1)=2453 18410 5674014 2444 22457 32 B> 4 == Executing PA-CTR 1, V(1)=1, V(2)=2453, repcount=818, factor=5/3 30680 15721508 4080 23 34092 B> 4 30681 15721509 4079 23 34092 <B 1 30682 15725601 -13 23 <B 24092 1 30683 15725602 -12 22 3 B> 24092 1 30684 15729694 4080 22 34093 B> 1 30685 15729695 4079 22 34093 <B 3 30686 15733788 -14 22 <B 24093 3 30687 15733789 -13 2 3 B> 24093 3 30688 15737882 4080 2 34094 B> 3 30689 15737883 4079 2 34094 <B 2 30690 15741977 -15 2 <B 24095 30691 15741978 -14 3 B> 24095 30692 15746073 4081 34096 B> 30693 15746074 4082 34096 2 A> 30694 15746075 4081 34096 2 <B 4 30695 15746076 4082 34097 B> 4 30696 15746077 4081 34097 <B 1 30697 15750174 -16 <B 24097 1 30698 15750175 -15 2 A> 24097 1 30699 15754272 4082 24098 A> 1 30700 15754273 4083 24098 1 H> 30700 15754273 4083 24098 1 H> [stop] Lines: 110 Top steps: 108 Macro steps: 30700 Basic steps: 15754273 Tape index: 4083 nonzeros: 4099 log10(nonzeros): 3.613 log10(steps ): 7.197 Run state: stop
Input to awk program: gohalt 1 nbs 5 T 2-state 5-symbol #a from T.J. & S. Ligocki : 4099 15754273 5T 4LB 1RH 2RA 0LB 3LB 2RA 3LB 3RB 2LB 1LB L 10 M 201 pref sim machv Lig25_a just simple machv Lig25_a-r with repetitions reduced machv Lig25_a-1 with tape symbol exponents machv Lig25_a-m as 1-macro machine machv Lig25_a-a as 1-macro machine with pure additive config-TRs iam Lig25_a-a mtype 1 mmtyp 3 r 1 H 1 mac 0 E 2 sympr HM 1 date Tue Jul 6 22:12:39 CEST 2010 edate Tue Jul 6 22:12:39 CEST 2010 bnspeed 1Start: Tue Jul 6 22:12:39 CEST 2010
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;