3-state 3-symbol TM #c of G. Lafitte & C. Papazian

Comment: This TM produces 43'925 nonzeros in 1'808'669'066 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on 0 on 1 on 2
Print Move Goto Print Move Goto Print Move Goto
A B1R A2L A1R 1 right B 2 left A 1 right A
B B1L A1L C2R 1 left B 1 left A 2 right C
C Z1R C1L B2R 1 right Z 1 left C 2 right B
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . . . . 0
     1    1 B . . . . . 10
     2    0 B . . . . . 11
     3   -1 A . . . . .011
     4    0 B . . . . .111
     5   -1 A . . . . .111
     6   -2 A . . . . 0211
     7   -1 B . . . . 1211
     8    0 C . . . . 1211
     9   -1 C . . . . 1211
    10    0 B . . . . 1211
    11   -1 A . . . . 1211
    12    0 A . . . . 1111
    13   -1 A . . . . 1121
    14   -2 A . . . . 1221
    15   -3 A . . . .02221
    16   -2 B . . . .12221
    17   -1 C . . . .12221
    18    0 B . . . .12221
    19    1 C . . . .12221
    20    0 C . . . .12221
    21    1 B . . . .12221
    22    0 A . . . .12221
    23    1 A . . . .12211
    24    0 A . . . .12212
    25   -1 A . . . .12222
    26    0 A . . . .12122
    27    1 A . . . .12112
    28    2 A . . . .121110
    29    3 B . . . .1211110
    30    2 B . . . .1211111
    31    1 A . . . .1211111
    32    0 A . . . .1211211
    33   -1 A . . . .1212211
    34   -2 A . . . .1222211
    35   -1 A . . . .1122211
    36    0 A . . . .1112211
    37    1 A . . . .1111211
    38    2 A . . . .1111111
    39    1 A . . . .1111121
    40    0 A . . . .1111221
    41   -1 A . . . .1112221
    42   -2 A . . . .1122221
    43   -3 A . . . .1222221
    44   -4 A . . . 02222221
    45   -3 B . . . 12222221
    46   -2 C . . . 12222221
    47   -1 B . . . 12222221
    48    0 C . . . 12222221
    49    1 B . . . 12222221
    50    2 C . . . 12222221
    51    3 B . . . 12222221
    52    2 A . . . 12222221
    53    3 A . . . 12222211
    54    2 A . . . 12222212
    55    1 A . . . 12222222
    56    2 A . . . 12222122
    57    3 A . . . 12222112
    58    4 A . . . 122221110
    59    5 B . . . 1222211110
    60    4 B . . . 1222211111
    61    3 A . . . 1222211111
    62    2 A . . . 1222211211
    63    1 A . . . 1222212211
    64    0 A . . . 1222222211
    65    1 A . . . 1222122211
    66    2 A . . . 1222112211
    67    3 A . . . 1222111211
    68    4 A . . . 1222111111
    69    3 A . . . 1222111121
    70    2 A . . . 1222111221
    71    1 A . . . 1222112221
    72    0 A . . . 1222122221
    73   -1 A . . . 1222222221
    74    0 A . . . 1221222221
    75    1 A . . . 1221122221
    76    2 A . . . 1221112221
    77    3 A . . . 1221111221
    78    4 A . . . 1221111121
    79    5 A . . . 1221111111
    80    4 A . . . 1221111112
    81    3 A . . . 1221111122
    82    2 A . . . 1221111222
    83    1 A . . . 1221112222
    84    0 A . . . 1221122222
    85   -1 A . . . 1221222222
    86   -2 A . . . 1222222222
    87   -1 A . . . 1212222222
    88    0 A . . . 1211222222
    89    1 A . . . 1211122222
    90    2 A . . . 1211112222
    91    3 A . . . 1211111222
    92    4 A . . . 1211111122
    93    5 A . . . 1211111112
    94    6 A . . . 12111111110
    95    7 B . . . 121111111110
    96    6 B . . . 121111111111
    97    5 A . . . 121111111111
    98    4 A . . . 121111111211
    99    3 A . . . 121111112211
   100    2 A . . . 121111122211
   101    1 A . . . 121111222211
   102    0 A . . . 121112222211
   103   -1 A . . . 121122222211
   104   -2 A . . . 121222222211
   105   -3 A . . . 122222222211
   106   -2 A . . . 112222222211
   107   -1 A . . . 111222222211
   108    0 A . . . 111122222211
   109    1 A . . . 111112222211
   110    2 A . . . 111111222211
   111    3 A . . . 111111122211
   112    4 A . . . 111111112211
   113    5 A . . . 111111111211
   114    6 A . . . 111111111111
   115    5 A . . . 111111111121
   116    4 A . . . 111111111221
   117    3 A . . . 111111112221
   118    2 A . . . 111111122221
   119    1 A . . . 111111222221
   120    0 A . . . 111112222221
   121   -1 A . . . 111122222221
   122   -2 A . . . 111222222221
   123   -3 A . . . 112222222221
   124   -4 A . . . 122222222221
   125   -5 A . . .0222222222221
   126   -4 B . . .1222222222221
   127   -3 C . . .1222222222221
   128   -2 B . . .1222222222221
   129   -1 C . . .1222222222221
   130    0 B . . .1222222222221
   131    1 C . . .1222222222221
   132    2 B . . .1222222222221
   133    3 C . . .1222222222221
   134    4 B . . .1222222222221
   135    5 C . . .1222222222221
   136    6 B . . .1222222222221
   137    7 C . . .1222222222221
   138    6 C . . .1222222222221
   139    7 B . . .1222222222221
   140    6 A . . .1222222222221
   141    7 A . . .1222222222211
   142    6 A . . .1222222222212
   143    5 A . . .1222222222222
   144    6 A . . .1222222222122
   145    7 A . . .1222222222112
   146    8 A . . .12222222221110
   147    9 B . . .122222222211110
   148    8 B . . .122222222211111
   149    7 A . . .122222222211111
   150    6 A . . .122222222211211
   151    5 A . . .122222222212211
   152    4 A . . .122222222222211
   153    5 A . . .122222222122211
   154    6 A . . .122222222112211
   155    7 A . . .122222222111211
   156    8 A . . .122222222111111
   157    7 A . . .122222222111121
   158    6 A . . .122222222111221
   159    5 A . . .122222222112221
   160    4 A . . .122222222122221
   161    3 A . . .122222222222221
   162    4 A . . .122222221222221
   163    5 A . . .122222221122221
   164    6 A . . .122222221112221
   165    7 A . . .122222221111221
   166    8 A . . .122222221111121
   167    9 A . . .122222221111111
   168    8 A . . .122222221111112
   169    7 A . . .122222221111122
   170    6 A . . .122222221111222
   171    5 A . . .122222221112222
   172    4 A . . .122222221122222
   173    3 A . . .122222221222222
   174    2 A . . .122222222222222
   175    3 A . . .122222212222222
   176    4 A . . .122222211222222
   177    5 A . . .122222211122222
   178    6 A . . .122222211112222
   179    7 A . . .122222211111222
   180    8 A . . .122222211111122
   181    9 A . . .122222211111112
   182   10 A . . .1222222111111110
   183   11 B . . .12222221111111110
   184   10 B . . .12222221111111111
   185    9 A . . .12222221111111111
   186    8 A . . .12222221111111211
   187    7 A . . .12222221111112211
   188    6 A . . .12222221111122211
   189    5 A . . .12222221111222211
   190    4 A . . .12222221112222211
   191    3 A . . .12222221122222211
   192    2 A . . .12222221222222211
   193    1 A . . .12222222222222211
   194    2 A . . .12222212222222211
   195    3 A . . .12222211222222211
   196    4 A . . .12222211122222211
   197    5 A . . .12222211112222211
   198    6 A . . .12222211111222211
   199    7 A . . .12222211111122211
   200    8 A . . .12222211111112211

After 200 steps (201 lines): state = A.
Produced     17 nonzeros.
Tape index 8, scanned [-5 .. 11].
State Count Execution count First in step
on 0 on 1 on 2 on 0 on 1 on 2
A 156 11 76 69 0 5 11
B 29 6 11 12 1 2 7
C 15   3 12   8 9
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:11:47 CEST 2010