Comment: This TM produces 43'925 nonzeros in 1'808'669'066 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | |||||||
A | B1R | A2L | A1R | 1 | right | B | 2 | left | A | 1 | right | A |
B | B1L | A1L | C2R | 1 | left | B | 1 | left | A | 2 | right | C |
C | Z1R | C1L | B2R | 1 | right | Z | 1 | left | C | 2 | right | B |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 2-macro machine. The same TM as 2-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <B 1 3 -1 <A 1 1 4 0 1 B> 1 1 5 -1 1 <A 1 1 6 -2 <A 2 1 1 7 -1 1 B> 2 1 1 8 0 1 2 C> 1 1 9 -1 1 2 <C 1 1 10 0 1 2 B> 1 1 11 -1 1 2 <A 1 1 12 0 1 1 A> 1 1 13 -1 1 1 <A 2 1 + 15 -3 <A 23 1 16 -2 1 B> 23 1 17 -1 1 2 C> 2 2 1 18 0 1 2 2 B> 2 1 19 1 1 23 C> 1 20 0 1 23 <C 1 21 1 1 23 B> 1 22 0 1 23 <A 1 23 1 1 2 2 1 A> 1 24 0 1 2 2 1 <A 2 25 -1 1 2 2 <A 2 2 26 0 1 2 1 A> 2 2 + 28 2 1 2 13 A> 29 3 1 2 14 B> 30 2 1 2 14 <B 1 31 1 1 2 13 <A 1 1 + 34 -2 1 2 <A 23 1 1 35 -1 1 1 A> 23 1 1 + 38 2 15 A> 1 1 39 1 15 <A 2 1 + 44 -4 <A 26 1 45 -3 1 B> 26 1 46 -2 1 2 C> 25 1 47 -1 1 2 2 B> 24 1 48 0 1 23 C> 23 1 49 1 1 24 B> 2 2 1 50 2 1 25 C> 2 1 51 3 1 26 B> 1 52 2 1 26 <A 1 53 3 1 25 1 A> 1 54 2 1 25 1 <A 2 55 1 1 25 <A 2 2 56 2 1 24 1 A> 2 2 + 58 4 1 24 13 A> 59 5 1 24 14 B> 60 4 1 24 14 <B 1 61 3 1 24 13 <A 1 1 + 64 0 1 24 <A 23 1 1 65 1 1 23 1 A> 23 1 1 + 68 4 1 23 14 A> 1 1 69 3 1 23 14 <A 2 1 + 73 -1 1 23 <A 25 1 74 0 1 2 2 1 A> 25 1 + 79 5 1 2 2 16 A> 1 80 4 1 2 2 16 <A 2 + 86 -2 1 2 2 <A 27 87 -1 1 2 1 A> 27 + 94 6 1 2 18 A> 95 7 1 2 19 B> 96 6 1 2 19 <B 1 97 5 1 2 18 <A 1 1 + 105 -3 1 2 <A 28 1 1 106 -2 1 1 A> 28 1 1 + 114 6 110 A> 1 1 115 5 110 <A 2 1 + 125 -5 <A 211 1 126 -4 1 B> 211 1 127 -3 1 2 C> 210 1 128 -2 1 2 2 B> 29 1 129 -1 1 23 C> 28 1 130 0 1 24 B> 27 1 131 1 1 25 C> 26 1 132 2 1 26 B> 25 1 133 3 1 27 C> 24 1 134 4 1 28 B> 23 1 135 5 1 29 C> 2 2 1 136 6 1 210 B> 2 1 137 7 1 211 C> 1 138 6 1 211 <C 1 139 7 1 211 B> 1 140 6 1 211 <A 1 141 7 1 210 1 A> 1 142 6 1 210 1 <A 2 143 5 1 210 <A 2 2 144 6 1 29 1 A> 2 2 + 146 8 1 29 13 A> 147 9 1 29 14 B> 148 8 1 29 14 <B 1 149 7 1 29 13 <A 1 1 + 152 4 1 29 <A 23 1 1 153 5 1 28 1 A> 23 1 1 + 156 8 1 28 14 A> 1 1 157 7 1 28 14 <A 2 1 + 161 3 1 28 <A 25 1 162 4 1 27 1 A> 25 1 + 167 9 1 27 16 A> 1 168 8 1 27 16 <A 2 + 174 2 1 27 <A 27 175 3 1 26 1 A> 27 + 182 10 1 26 18 A> 183 11 1 26 19 B> 184 10 1 26 19 <B 1 185 9 1 26 18 <A 1 1 + 193 1 1 26 <A 28 1 1 194 2 1 25 1 A> 28 1 1 + 202 10 1 25 19 A> 1 1 203 9 1 25 19 <A 2 1 + 212 0 1 25 <A 210 1 213 1 1 24 1 A> 210 1 + 223 11 1 24 111 A> 1 224 10 1 24 111 <A 2 + 235 -1 1 24 <A 212 236 0 1 23 1 A> 212 + 248 12 1 23 113 A> 249 13 1 23 114 B> 250 12 1 23 114 <B 1 251 11 1 23 113 <A 1 1 + 264 -2 1 23 <A 213 1 1 265 -1 1 2 2 1 A> 213 1 1 + 278 12 1 2 2 114 A> 1 1 279 11 1 2 2 114 <A 2 1 + 293 -3 1 2 2 <A 215 1 294 -2 1 2 1 A> 215 1 + 309 13 1 2 116 A> 1 310 12 1 2 116 <A 2 + 326 -4 1 2 <A 217 327 -3 1 1 A> 217 + 344 14 119 A> 345 15 120 B> 346 14 120 <B 1 347 13 119 <A 1 1 + 366 -6 <A 219 1 1 367 -5 1 B> 219 1 1 368 -4 1 2 C> 218 1 1 369 -3 1 2 2 B> 217 1 1 370 -2 1 23 C> 216 1 1 371 -1 1 24 B> 215 1 1 372 0 1 25 C> 214 1 1 373 1 1 26 B> 213 1 1 374 2 1 27 C> 212 1 1 375 3 1 28 B> 211 1 1 376 4 1 29 C> 210 1 1 377 5 1 210 B> 29 1 1 378 6 1 211 C> 28 1 1 379 7 1 212 B> 27 1 1 380 8 1 213 C> 26 1 1 381 9 1 214 B> 25 1 1 382 10 1 215 C> 24 1 1 383 11 1 216 B> 23 1 1 384 12 1 217 C> 2 2 1 1 385 13 1 218 B> 2 1 1 386 14 1 219 C> 1 1 387 13 1 219 <C 1 1 388 14 1 219 B> 1 1 389 13 1 219 <A 1 1 390 14 1 218 1 A> 1 1 391 13 1 218 1 <A 2 1 392 12 1 218 <A 2 2 1 393 13 1 217 1 A> 2 2 1 + 395 15 1 217 13 A> 1 396 14 1 217 13 <A 2 + 399 11 1 217 <A 24 400 12 1 216 1 A> 24 + 404 16 1 216 15 A> 405 17 1 216 16 B> 406 16 1 216 16 <B 1 407 15 1 216 15 <A 1 1 + 412 10 1 216 <A 25 1 1 413 11 1 215 1 A> 25 1 1 + 418 16 1 215 16 A> 1 1 419 15 1 215 16 <A 2 1 + 425 9 1 215 <A 27 1 426 10 1 214 1 A> 27 1 + 433 17 1 214 18 A> 1 434 16 1 214 18 <A 2 + 442 8 1 214 <A 29 443 9 1 213 1 A> 29 + 452 18 1 213 110 A> 453 19 1 213 111 B> 454 18 1 213 111 <B 1 455 17 1 213 110 <A 1 1 + 465 7 1 213 <A 210 1 1 466 8 1 212 1 A> 210 1 1 + 476 18 1 212 111 A> 1 1 477 17 1 212 111 <A 2 1 + 488 6 1 212 <A 212 1 489 7 1 211 1 A> 212 1 + 501 19 1 211 113 A> 1 502 18 1 211 113 <A 2 + 515 5 1 211 <A 214 516 6 1 210 1 A> 214 + 530 20 1 210 115 A> 531 21 1 210 116 B> 532 20 1 210 116 <B 1 533 19 1 210 115 <A 1 1 + 548 4 1 210 <A 215 1 1 549 5 1 29 1 A> 215 1 1 After 549 steps (201 lines): state = A. Produced 28 nonzeros. Tape index 5, scanned [-6 .. 21].
State | Count | Execution count | First in step | ||||
---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
A | 473 | 17 | 240 | 216 | 0 | 5 | 11 |
B | 50 | 11 | 17 | 22 | 1 | 2 | 7 |
C | 26 | 4 | 22 | 8 | 9 |