Comment: This TM produces 43'925 nonzeros in 1'808'669'066 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | |||||||
| A | B1R | A2L | A1R | 1 | right | B | 2 | left | A | 1 | right | A |
| B | B1L | A1L | C2R | 1 | left | B | 1 | left | A | 2 | right | C |
| C | Z1R | C1L | B2R | 1 | right | Z | 1 | left | C | 2 | right | B |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <B 1
3 -1 <A 1 1
4 0 1 B> 1 1
5 -1 1 <A 1 1
6 -2 <A 2 1 1
7 -1 1 B> 2 1 1
8 0 1 2 C> 1 1
9 -1 1 2 <C 1 1
10 0 1 2 B> 1 1
11 -1 1 2 <A 1 1
12 0 1 1 A> 1 1
13 -1 1 1 <A 2 1
+ 15 -3 <A 23 1
16 -2 1 B> 23 1
17 -1 1 2 C> 2 2 1
18 0 1 2 2 B> 2 1
19 1 1 23 C> 1
20 0 1 23 <C 1
21 1 1 23 B> 1
22 0 1 23 <A 1
23 1 1 2 2 1 A> 1
24 0 1 2 2 1 <A 2
25 -1 1 2 2 <A 2 2
26 0 1 2 1 A> 2 2
+ 28 2 1 2 13 A>
29 3 1 2 14 B>
30 2 1 2 14 <B 1
31 1 1 2 13 <A 1 1
+ 34 -2 1 2 <A 23 1 1
35 -1 1 1 A> 23 1 1
+ 38 2 15 A> 1 1
39 1 15 <A 2 1
+ 44 -4 <A 26 1
45 -3 1 B> 26 1
46 -2 1 2 C> 25 1
47 -1 1 2 2 B> 24 1
48 0 1 23 C> 23 1
49 1 1 24 B> 2 2 1
50 2 1 25 C> 2 1
51 3 1 26 B> 1
52 2 1 26 <A 1
53 3 1 25 1 A> 1
54 2 1 25 1 <A 2
55 1 1 25 <A 2 2
56 2 1 24 1 A> 2 2
+ 58 4 1 24 13 A>
59 5 1 24 14 B>
60 4 1 24 14 <B 1
61 3 1 24 13 <A 1 1
+ 64 0 1 24 <A 23 1 1
65 1 1 23 1 A> 23 1 1
+ 68 4 1 23 14 A> 1 1
69 3 1 23 14 <A 2 1
+ 73 -1 1 23 <A 25 1
74 0 1 2 2 1 A> 25 1
+ 79 5 1 2 2 16 A> 1
80 4 1 2 2 16 <A 2
+ 86 -2 1 2 2 <A 27
87 -1 1 2 1 A> 27
+ 94 6 1 2 18 A>
95 7 1 2 19 B>
96 6 1 2 19 <B 1
97 5 1 2 18 <A 1 1
+ 105 -3 1 2 <A 28 1 1
106 -2 1 1 A> 28 1 1
+ 114 6 110 A> 1 1
115 5 110 <A 2 1
+ 125 -5 <A 211 1
126 -4 1 B> 211 1
127 -3 1 2 C> 210 1
128 -2 1 2 2 B> 29 1
129 -1 1 23 C> 28 1
130 0 1 24 B> 27 1
131 1 1 25 C> 26 1
132 2 1 26 B> 25 1
133 3 1 27 C> 24 1
134 4 1 28 B> 23 1
135 5 1 29 C> 2 2 1
136 6 1 210 B> 2 1
137 7 1 211 C> 1
138 6 1 211 <C 1
139 7 1 211 B> 1
140 6 1 211 <A 1
141 7 1 210 1 A> 1
142 6 1 210 1 <A 2
143 5 1 210 <A 2 2
144 6 1 29 1 A> 2 2
+ 146 8 1 29 13 A>
147 9 1 29 14 B>
148 8 1 29 14 <B 1
149 7 1 29 13 <A 1 1
+ 152 4 1 29 <A 23 1 1
153 5 1 28 1 A> 23 1 1
+ 156 8 1 28 14 A> 1 1
157 7 1 28 14 <A 2 1
+ 161 3 1 28 <A 25 1
162 4 1 27 1 A> 25 1
+ 167 9 1 27 16 A> 1
168 8 1 27 16 <A 2
+ 174 2 1 27 <A 27
175 3 1 26 1 A> 27
+ 182 10 1 26 18 A>
183 11 1 26 19 B>
184 10 1 26 19 <B 1
185 9 1 26 18 <A 1 1
+ 193 1 1 26 <A 28 1 1
194 2 1 25 1 A> 28 1 1
+ 202 10 1 25 19 A> 1 1
203 9 1 25 19 <A 2 1
+ 212 0 1 25 <A 210 1
213 1 1 24 1 A> 210 1
+ 223 11 1 24 111 A> 1
224 10 1 24 111 <A 2
+ 235 -1 1 24 <A 212
236 0 1 23 1 A> 212
+ 248 12 1 23 113 A>
249 13 1 23 114 B>
250 12 1 23 114 <B 1
251 11 1 23 113 <A 1 1
+ 264 -2 1 23 <A 213 1 1
265 -1 1 2 2 1 A> 213 1 1
+ 278 12 1 2 2 114 A> 1 1
279 11 1 2 2 114 <A 2 1
+ 293 -3 1 2 2 <A 215 1
294 -2 1 2 1 A> 215 1
+ 309 13 1 2 116 A> 1
310 12 1 2 116 <A 2
+ 326 -4 1 2 <A 217
327 -3 1 1 A> 217
+ 344 14 119 A>
345 15 120 B>
346 14 120 <B 1
347 13 119 <A 1 1
+ 366 -6 <A 219 1 1
367 -5 1 B> 219 1 1
368 -4 1 2 C> 218 1 1
369 -3 1 2 2 B> 217 1 1
370 -2 1 23 C> 216 1 1
371 -1 1 24 B> 215 1 1
372 0 1 25 C> 214 1 1
373 1 1 26 B> 213 1 1
374 2 1 27 C> 212 1 1
375 3 1 28 B> 211 1 1
376 4 1 29 C> 210 1 1
377 5 1 210 B> 29 1 1
378 6 1 211 C> 28 1 1
379 7 1 212 B> 27 1 1
380 8 1 213 C> 26 1 1
381 9 1 214 B> 25 1 1
382 10 1 215 C> 24 1 1
383 11 1 216 B> 23 1 1
384 12 1 217 C> 2 2 1 1
385 13 1 218 B> 2 1 1
386 14 1 219 C> 1 1
387 13 1 219 <C 1 1
388 14 1 219 B> 1 1
389 13 1 219 <A 1 1
390 14 1 218 1 A> 1 1
391 13 1 218 1 <A 2 1
392 12 1 218 <A 2 2 1
393 13 1 217 1 A> 2 2 1
+ 395 15 1 217 13 A> 1
396 14 1 217 13 <A 2
+ 399 11 1 217 <A 24
400 12 1 216 1 A> 24
+ 404 16 1 216 15 A>
405 17 1 216 16 B>
406 16 1 216 16 <B 1
407 15 1 216 15 <A 1 1
+ 412 10 1 216 <A 25 1 1
413 11 1 215 1 A> 25 1 1
+ 418 16 1 215 16 A> 1 1
419 15 1 215 16 <A 2 1
+ 425 9 1 215 <A 27 1
426 10 1 214 1 A> 27 1
+ 433 17 1 214 18 A> 1
434 16 1 214 18 <A 2
+ 442 8 1 214 <A 29
443 9 1 213 1 A> 29
+ 452 18 1 213 110 A>
453 19 1 213 111 B>
454 18 1 213 111 <B 1
455 17 1 213 110 <A 1 1
+ 465 7 1 213 <A 210 1 1
466 8 1 212 1 A> 210 1 1
+ 476 18 1 212 111 A> 1 1
477 17 1 212 111 <A 2 1
+ 488 6 1 212 <A 212 1
489 7 1 211 1 A> 212 1
+ 501 19 1 211 113 A> 1
502 18 1 211 113 <A 2
+ 515 5 1 211 <A 214
516 6 1 210 1 A> 214
+ 530 20 1 210 115 A>
531 21 1 210 116 B>
532 20 1 210 116 <B 1
533 19 1 210 115 <A 1 1
+ 548 4 1 210 <A 215 1 1
549 5 1 29 1 A> 215 1 1
After 549 steps (201 lines): state = A.
Produced 28 nonzeros.
Tape index 5, scanned [-6 .. 21].
| State | Count | Execution count | First in step | ||||
|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
| A | 473 | 17 | 240 | 216 | 0 | 5 | 11 |
| B | 50 | 11 | 17 | 22 | 1 | 2 | 7 |
| C | 26 | 4 | 22 | 8 | 9 | ||